Answer:
The last graph.
Explanation:
Gravitational potential energy is the energy possessed by a body at a given height from the Earth's surface.
The formula to find the gravitational potential energy is given as:

Where, 'U' is the gravitational potential energy.
'm' is the mass of the body.
'g' is the acceleration of the body due to gravity.
'h' is the height of the body above the Earth's surface.
So, from the above equation, it is clear that, gravitational potential energy is directly proportional to the height. So, as height increases, the gravitational potential energy increases. At the surface of Earth, where, height is 0, the gravitational potential energy is also zero.
Therefore, the correct graph is a straight line with positive slope and passing through the origin. So, the last option is the correct one.
Answer:
Rms speed of the particle will be 
Explanation:
We have given mass of the air particle 
Gas constant R = 8.314 J/mol-K
Temperature is given T = 
We have to find the root mean square speed of the particle
Which is given by 
So rms speed of the particle will be 
The sum of all forces applied to the object = (mass) x (acceleration)
The sum of all forces applied to the object = (30) x (15)
= <u>450 newtons</u>, in the direction of the acceleration.
Answer:
Fm - W = 0 1) true. Imams must separate, to match the two forces, you reach equilibrium
Explanation:
When the magnet is exchanged for a stronger one, but of the same weight, the equilibrium equation
Fm - W = 0
Fm = W
If the weight of the imam is the same, the magnetite force must decrease, so that it will occupy the magnets must be separated a greater distance, according to the formula
Fm = Km m ’m / r²
Where Km is value 10⁻⁷ N s²/C², r is the distance between the poles
Let's review the proposed results
1) true. Imams must separate, to match the two forces, you reach equilibrium
2) False. In this case the weight would be less than the magnetic force
3) False The magnetic force increases and equilibrium is not reached