Explanation:
solution: mass m = 5g = 0.005kg; extension e = 7cm = 0.07m; force f = 70 N; velocity = ?; using: work done in elastic material w = 1/2 fe = 1/2 ke2 = 1/2 mv2 - the kinetic energy of the moving stone. 1/2 fe =...
Yes all those are correct, but I don't know what the question was
Answer:
The magnitude of electrostatic force on each charge is quarter of the magnitude of initial electrostatic force. ( ¹/₄ F)
Explanation:
The electrostatic force between two charges is given by Coulomb's law;

where;
Q₁ and Q₂ are the magnitude of the charges
r is the distance between the charges
k is Coulomb's constant
Since the charges are identical;
Q₁ = Q
Q₂ = Q
the electrostatic force experienced by each charge is given by;

When each of the spheres has lost half of its initial charge;
Q₁ = Q/2
Q₂ = Q/2

Therefore, the magnitude of electrostatic force on each charge is quarter of the magnitude of initial electrostatic force.
The correct answer is
<span> (3) 3.2 × 10^−19 C
In fact, electric charge is quantized: the elementary charge is the charge of the electron, </span>

, and every particle can only have an electric charge which is an integer multiple of this value. Of the options listed above, only option (3) is an integer multiple of the elementary charge: in fact, it corresponds to 2 times the electron charge: