Answer: The correct answer is "Number of rope segments supporting the load".
Explanation:
Mechanical advantage: It is defined as the ratio of the force produced by a machine to the force applied on the machine. The ideal mechanical advantage of a machines is mechanical advantage in the absence of friction.
The ideal mechanical advantage of a pulley system is equal to the number of rope segments which is supporting the load. More the rope segments, It is more helpful to do the lifting the work.
It means that less force is needed for this task to complete.
Therefore, the correct option is (C).
The net force must be zero
This is in accordance to Newton's first law, which states that any object in motion will remain in motion and any object at rest will remain at rest unless acted upon by an unbalanced force. An unbalanced force is one where the net force is not zero. If no unbalanced force is applied to a moving object, it will keep moving forever. The reason that we do not observe this in our daily lives is due to friction acting as the unbalanced force.
Answer:
kinetic energy
Explanation:
a certain amount of energy is transferred by the kick. The ball gains an equal amount of energy, mostly in the form of kinetic energy.
Kinetic energy = (1/2) (mass) (speed)²
= (1/2) (1.4 kg) (22.5 m/s)²
= (0.7 kg) (506.25 m²/s² )
= 354.375 kg-m²/s² = 354.375 joules .
This is just the kinetic energy associated with a 1.4-kg glob of
mass sailing through space at 22.5 m/s. In the case of a frisbee,
it's also spinning, and there's some additional kinetic energy stored
in the spin.
Efficiency = useful energy out / total energy in x 100
= 100/400 x 100
=0.25 x 100
= 25%
25%