Here is the energy that is left after the quantity of energy is transformed: 750 j of electrical energy is changed into 400 j of kinetic or mechanical energy, which is then turned into 0.32 j of efficient energy.
To run the fan, electrical energy is utilized.
Here, under the specified circumstances, 750 J of electrical energy is utilized to operate the fan, which is transformed into 400 J of kinetic energy. As a result, 350 J of energy is wasted due to various frictional and resistive losses.
Therefore, we may conclude that only 400 J of the 750 J available energy is used to power the fan, with the remaining energy being wasted as a result of friction.
Additionally, we can state that this fan's effectiveness will be
n = Useful ÷ Total
n = 400 ÷ 750
n = 8 ÷ 25
n = 0.32
Learn more about energy at
brainly.com/question/15915007?referrer=searchResults
#SPJ4
Answer:
0.050 m
Explanation:
The strength of the magnetic field produced by a current-carrying wire is given by

where
is the vacuum permeability
I is the current in the wire
r is the distance from the wire
And the magnetic field around the wire forms concentric circles, and it is tangential to the circles.
In this problem, we have:
(current in the wire)
(strength of magnetic field)
Solving for r, we find the distance from the wire:

It has to be one continuous column of cloud (air) connected to the ground and in constant rotation.