Answer:
0.4 M
Explanation:
Molarity is defined as moles of solute, which in your case is sodium hydroxide,
NaOH
, divided by liters of solution.
molarity
=
moles of solute
liters of solution
Notice that the problem provides you with the volume of the solution, but that the volume is expressed in milliliters,
mL
.
Moreover, you don't have the number of moles of sodium hydroxide, you just have the mass in grams. So, your strategy here will be to
determine how many moles of sodium hydroxide you have in that many grams
convert the volume of the solution from milliliters to liters
So, to get the number of moles of solute, use sodium hydroxide's molar mass, which tells you what the mass of one mole of sodium hydroxide is.
7
g
⋅
1 mole NaOH
40.0
g
=
0.175 moles NaOH
The volume of the solution in liters will be
500
mL
⋅
1 L
1000
mL
=
0.5 L
Therefore, the molarity of the solution will be
c
=
n
V
c
=
0.175 moles
0.5 L
=
0.35 M
Rounded to one sig fig, the answer will be
c
=
0.4 M
Explanation:
Answer : The pressure of the helium gas is, 1269.2 mmHg
Explanation :
To calculate the pressure of the gas we are using ideal gas equation:
where,
P = Pressure of gas = ?
V = Volume of gas = 210. mL = 0.210 L (1 L = 1000 mL)
n = number of moles = 0.0130 mole
R = Gas constant =
T = Temperature of gas =
Putting values in above equation, we get:
Conversion used : (1 atm = 760 mmHg)
Thus, the pressure of the helium gas is, 1269.2 mmHg
Allotropes are elements on the periodic table that have more than one crystalline form . There are three forms of the element carbon : Diamond, Graphite, and Fullerenes. Isotopes are atoms of the same element with the same atomic number but have a different mass number.
White blood cells work in two ways; they can ingest or engulf pathogens and destroy them by digesting them. White blood cells can also produce antibodies to destroy particular pathogens by clumping them together and destroying them. They also produce antitoxins that counteract the toxins released by pathogens.