Answer : The internal energy change is -2805.8 kJ/mol
Explanation :
First we have to calculate the heat gained by the calorimeter.

where,
q = heat gained = ?
c = specific heat = 
= final temperature = 
= initial temperature = 
Now put all the given values in the above formula, we get:


Now we have to calculate the enthalpy change during the reaction.

where,
= enthalpy change = ?
q = heat gained = 23.4 kJ
n = number of moles fructose = 

Therefore, the enthalpy change during the reaction is -2805.8 kJ/mole
Now we have to calculate the internal energy change for the combustion of 1.501 g of fructose.
Formula used :

or,

where,
= change in enthalpy = 
= change in internal energy = ?
= change in moles = 0 (from the reaction)
R = gas constant = 8.314 J/mol.K
T = temperature = 
Now put all the given values in the above formula, we get:




Therefore, the internal energy change is -2805.8 kJ/mol
Answer: 0, 32 , 273
Explanation:
The freezing point of water in degree Celsius, Fahrenheit and Kelvin are in the following order; 0 , 32 , 273
<span>Use descriptive axis labels and legends
</span>
“Models are developed when a scientist’s creativity and insight are combined with data and observations about many similar scenarios”. Models are used for a lot of things in science. As we know everything has advantages and disadvantages, and the same applies to models. Models help us illustrate the concept and formulate hypothesis. When models are used, the scientists are able to notice patterns and develop and revise representation that become a useful model, which makes their scientific knowledge stronger and helps them understand more about the nature of science. Models are a simplified representation. One of the biggest advantages of the model is, that it allows you to have a look at things which are too small such as atoms or too big such as the solar system.
Although, having many benefits, models have quite a number of disadvantages. Models sometimes oversimplify the process therefore leading to a misunderstanding. As models are supposed to be a simplified representation, they will not be complex, which means they will lack detail. For Example “our particle model explains many things about matter, it is not comprehensive — for example, it cannot predict why certain materials have different electrical properties. We could add further refinements that are outside the scope of this course to enable it to do so, but it would make our model so complicated that it would no longer be useful to us”