Based on the information provided, it appears that you will need to calculate the amount of heat absorbed by the water from the peanut that was burned. We are given the following information:
specific heat capacity, c = 1.0 cal/g°C
mass of water = 76 g
Ti = 22°C
Tf = 46°C
change in temperature, ΔT = 24°C
We can use the formula q = mcΔT to measure the amount of energy absorbed by the water to increase in tempature:
q = (76 g)(1.0 cal/g°C)(24°C)
q = 1824 cal
Therefore, the water absorbed 1824 calories from the peanut that was burned.
1) The more mass is the more entropy , because there are more particles, there is disorder.
2) Than higher temperature --- the more entropy.
3) Gas has more disorder than liquid, so gas has more entropy.
So, correct answer is E.
Answer:
The ΔG° is 29 kJ and the reaction is favored towards reactant.
Explanation:
Based on the given information, the ΔH°rxn or enthalpy change is 41.2 kJ, the ΔS°rxn or change in entropy is 42.1 J/K or 42.1 * 10⁻³ kJ/K. The temperature given is 289 K. Now the Gibbs Free energy change can be calculated by using the formula,
ΔG° = ΔH°rxn - TΔS°rxn
= 41.2 kJ - 289 K × 42.1 × 10⁻³ kJ/K
= 41.2 kJ - 12.2 kJ
= 29 kJ
As ΔG° of the reaction is positive, therefore, the reaction is favored towards reactant.
The answer should be hydrogen bonding. Water only has oxygen and hydrogen in it, which are both nonmetals, so you know the answer cannot be metallic or ionic. It also cannot be nonpolar because the electronegativity of the oxygens will make the molecule polar. You can also know it is hydrogen bonding because it can only take place when a hydrogen is attached to an oxygen, fluorine, or nitrogen. These bonds are very strong attractions, so the molecules are extremely hard to pull apart, creating a high boiling point. Hope that helps!