Answer:
Absorbing beta particle because the beta is the numbers and are less and the big numbers are positive and they are the alpha so when you add beta particle it is called Absorbing so the answer is Absorbing beta particle
Thermal energy travels<span> by conduction, convection, and radiation. It occurs when a cooler and warmer object touches each other. </span>
To increase the energy of the emitted electrons, the frequency of the incident light on the metal must be increased.
<h3>What is energy of emitted electron?</h3>
The maximum energy of an emitted electron is equal to the energy of a photon for frequency f (E = hf ), minus the energy required to eject an electron from the metal's surface, also known as work function.
Ee = E - W
<h3>Energy of the emitted electron</h3>
The energy of emitted electrons based on the research of Albert Einstein is given as;
E = hf
where;
- h is planck's constant
- f is frequency of incident light on the metal
Thus, to increase the energy of the emitted electrons, the frequency of the incident light on the metal must be increased.
Learn more about energy of electron here: brainly.com/question/11316046
#SPJ1
Answer:
The unknown amount of potassium chloride is 13.6 grams.
Explanation:
The reaction of 14 grams of KNO₃ with KCl produces a total mass of 27.6 grams of the products.
The law of conservation of mass tells us that the total mass of the reactants must be the same that the total mass of the products. So, we can find the mass of KCl as follows:

Where <em>r</em> is for reactants and <em>p </em>is for products



Therefore, the unknown amount of potassium chloride is 13.6 grams.
I hope it helps you!
Answer:
There were 0.00735 moles Pb^2+ in the solution
Explanation:
Step 1: Data given
Volume of the KI solution = 73.5 mL = 0.0735 L
Molarity of the KI solution = 0.200 M
Step 2: The balanced equation
2KI + Pb2+ → PbI2 + 2K+
Step 3: Calculate moles KI
moles = Molarity * volume
moles KI = 0.200M * 0.0735L = 0.0147 moles KI
Ste p 4: Calculate moles Pb^2+
For 2 moles KI we need 1 mol Pb^2+ to produce 1 mol PbI2 and 2 moles K+
For 0.0147 moles KI we need 0.0147 / 2 = 0.00735 moles Pb^2+
There were 0.00735 moles Pb^2+ in the solution