Since the temperature
is a constant, we can use Boyle's law to solve this.<span>
<span>Boyle' law says "at a constant temperature, the
pressure of a fixed amount of an ideal gas is inversely proportional to its
volume.
P α 1/V
</span>⇒
PV = k (constant)<span>
Where, P is the pressure of the gas and V is the
volume.
<span>Here, we assume that the </span>gas in the balloon is an ideal gas.
We can use Boyle's law for these two situations as,
P</span>₁V₁ = P₂V₂<span>
P₁ = 100.0 kPa = 1 x 10⁵ Pa
V₁ =
3.3 L
P₂ =
90.0 x 10³ Pa
V₂ =?
By substitution,
1 x 10⁵ Pa x 3.3 L = 90 x 10³ Pa x V₂</span><span>
V</span>₂ = 3.7 L<span>
</span><span>Hence, the volume of gas when pressure is 90.0 kPa
is 3.7 L.</span></span>
The sun ...................
The answer is A i think from the options though the answers are worded a bit weird
Answer:
pH = 3.65
Explanation:
given data
pKa of HNO2 = 3.40
nitrous acid (HNO2) = 0.110 M
NaNO2 = 0.200 M
to find out
What is the pH
solution
we get here ph for acidic buffer that is express as
pH = pKa + log(salt÷acid) ........................1
put here value and we get
pH = 3.40 + log(0.200÷0.110)
pH = 3.65