Decomposition reactions are a type of chemical reaction that involves breaking down a compound into smaller compounds or individual elements. These reactions often involve an input of energy in the form of heat, light, or electricity to break down the compounds.
Answer:
Oxidative phosphorylation proceeds with the formation of energy laden molecules i.e; carbondioxide and water.
Therefore, Total CO₂ production is directly related to VCO₂ = R x VO₂
where, R is the respiratory quotient varing among 0.7 to 1.0 according to the energy intake (ATP) ie 0.25 of the total diet consumed .
VO₂ is, as mentioned above arterial venous oxygen difference = 6.2ml/dl
therefore, VCO₂ = 0.25 x 6.2
= 1.55 ml/dl
ie; VO₂ : VCO₂ = 6.2 : 1.55.
Explanation:
Answer: The concentrations of
at equilibrium is 0.023 M
Explanation:
Moles of
= 
Volume of solution = 1 L
Initial concentration of
= 
The given balanced equilibrium reaction is,

Initial conc. 0.14 M 0 M 0M
At eqm. conc. (0.14-x) M (x) M (x) M
The expression for equilibrium constant for this reaction will be,
![K_c=\frac{[CO]\times [Cl_2]}{[COCl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCO%5D%5Ctimes%20%5BCl_2%5D%7D%7B%5BCOCl_2%5D%7D)
Now put all the given values in this expression, we get :

By solving the term 'x', we get :
x = 0.023 M
Thus, the concentrations of
at equilibrium is 0.023 M
The correct option is D.
The reactants that combine together to form glucose are carbon dioxide, water and energy from the sun. Six molecules of carbon dioxide combine with six molecules of water in the presence of sunlight to form glucose. The chemical equation for the reaction is given below"
6CO2 + 6H2O + Sunlight = C6H12O6.