Answer:
18.2 g.
Explanation:
You need to first figure out how many moles of nitrogen gas and hydrogen (gas) you have. To do this, use the molar masses of nitrogen gas and hydrogen (gas) on the periodic table. You get the following:
0.535 g. N2 and 1.984 g. H2
Then find out which reactant is the limiting one. In this case, it's N2. The amount of ammonia, then, that would be produced is 2 times the amount of moles of N2. This gives you 1.07 mol, approximately. Then multiply this by the molar mass of ammonia to find your answer of 18.2 g.
Answer: The equilibrium constant for the overall reaction is ![K_a\times K_b](https://tex.z-dn.net/?f=K_a%5Ctimes%20K_b)
Explanation:
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios.
a) ![P(s)+\frac{3}{2}Cl_2(g)\rightarrow PCl_3(g)](https://tex.z-dn.net/?f=P%28s%29%2B%5Cfrac%7B3%7D%7B2%7DCl_2%28g%29%5Crightarrow%20PCl_3%28g%29)
![K_a=\frac{[PCl_3]}{[Cl_2]^{\frac{3}{2}}}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BPCl_3%5D%7D%7B%5BCl_2%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D)
b) ![PCl_3(g)+Cl_2(g)\rightarrow PCl_5(g)](https://tex.z-dn.net/?f=PCl_3%28g%29%2BCl_2%28g%29%5Crightarrow%20PCl_5%28g%29)
![K_b=\frac{[PCl_5]}{[Cl_2]\times [PCl_3]}](https://tex.z-dn.net/?f=K_b%3D%5Cfrac%7B%5BPCl_5%5D%7D%7B%5BCl_2%5D%5Ctimes%20%5BPCl_3%5D%7D)
For overall reaction on adding a and b we get c
c) ![P(s)+\frac{5}{2}Cl_2(g)\rightarrow PCl_5(g)](https://tex.z-dn.net/?f=P%28s%29%2B%5Cfrac%7B5%7D%7B2%7DCl_2%28g%29%5Crightarrow%20PCl_5%28g%29)
![K_c=\frac{[PCl_5]}{[Cl_2]^\frac{5}{2}}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BPCl_5%5D%7D%7B%5BCl_2%5D%5E%5Cfrac%7B5%7D%7B2%7D%7D)
![K_c=K_a\times K_b=\frac{[PCl_3]}{[Cl_2]^{\frac{3}{2}}}\times \frac{[PCl_5]}{[Cl_2]\times [PCl_3]}](https://tex.z-dn.net/?f=K_c%3DK_a%5Ctimes%20K_b%3D%5Cfrac%7B%5BPCl_3%5D%7D%7B%5BCl_2%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%5Ctimes%20%5Cfrac%7B%5BPCl_5%5D%7D%7B%5BCl_2%5D%5Ctimes%20%5BPCl_3%5D%7D)
The equilibrium constant for the overall reaction is ![K_a\times K_b](https://tex.z-dn.net/?f=K_a%5Ctimes%20K_b)
No. The number of a protons is not equal to it's atomic weight, instead it is equal to the 'atomic number'
Answer:
Answer below.
Explanation:
An exothermic reaction is a chemical reaction that releases energy through light or heat. It is the opposite of an endothermic reaction. Expressed in a chemical equation: reactants → products + energy.
This problem is honestly, very easy. Just grab a periodic table and find the element in Group 1 and Period 7. But first, let's discuss how the elements are arranged systematically in a periodic table. There are a lot of scientists who contributed to it, but the most famous one is Dimitri Mendeleev. He arranged the elements according to their atomic number. The elements starts from 1 which is Hydrogen up to the heaviest known elements which is Oganesson with an atomic number of 118. As you can observe, there is a gap between groups 3 and 4. This is done so that the periodic table does not take too much space horizontally. Thus, they are just placed at the bottom. These elements are called lanthanides (upper row) and actinides (lower row). The rows in the periodic table are called groups, and the columns are called periods.
Now, the element at the lower left corner (Group 1, Period 7) is Francium, abbreviated as Fr. It has an atomic number of 87. Some elements are actually synthesized, but Francium is a naturally occurring radioactive element. It was discovered by Marguerite Perey in France.