Answer:
0.188mol
Explanation:
Using the formula;
mole = mass/molar mass
Molar mass of hypomanganous acid. (H3MnO4) = 1(3) + 55 + 16(4)
= 3 + 55 + 64
= 122g/mol
According to this question, there are 22.912g of H3MnO4
mole = 22.912g ÷ 122g/mol
mole = 0.188mol
<span>The answer is: C. The amount of water in the hydrosphere remains constant.
</span>The hydrosphere denotes the entire water available worldwide in lakes and streams, subsurface water, the ice of glaciers, and water vapor in the atmosphere. The water cycle is the process that converts liquid water to atmospheric water vapor (and vice versa) throughout the world.
Answer: The system will try and offset the change.
Explanation: Any change in the equilibrium is studied on the basis of Le-Chatelier's principle.
This principle states that if there is any change in the variables of the reaction, the equilibrium will shift in a direction to minimize the effect.
Thus if temperature is increased, the reaction will shift in a direction where temperature is decreasing and vice versa. Similarly if pressure is increased, the reaction will shift in a direction where pressure is decreasing and vice versa.
Answer:
H₂O is the limiting reactant
Theoretical yield of 240 g Al₂O₃ and 14 g H₂
Explanation:
Find how many moles of one reactant is needed to completely react with the other.
6.5 mol Al × (3 mol H₂O / 2 mol Al) = 9.75 mol H₂O
We need 9.75 mol of H₂O to completely react with 6.5 mol of Al. But we only have 7.2 mol of H₂O. Therefore, H₂O is the limiting reactant.
Now find the theoretical yield:
7.2 mol H₂O × (1 mol Al₂O₃ / 3 mol H₂O) × (102 g Al₂O₃ / mol Al₂O₃) ≈ 240 g Al₂O₃
7.2 mol H₂O × (3 mol H₂ / 3 mol H₂O) × (2 g H₂ / mol H₂) ≈ 14 g H₂
Since the data was given to two significant figures, we must round our answer to two significant figures as well.