Because the tip of the moon's shadow ... the area of "totality" ... is never more than a couple hundred miles across, It never covers a single place for more than 7 minutes, and can never stay on the Earth's surface for more than a few hours altogether during one eclipse.
If you're not inside that small area, you don't see a total eclipse.
Answer:
Both balls have the same speed.
Explanation:
Janelle throws the two balls from the same height, with the same speed. Both balls will have the same potential and kinetic energy. Energy must be conserved. When the balls pass Michael, again they must have the same potential and kinetic energy.
Answer:
the claim is not valid or reasonable.
Explanation:
In order to test the claim we will find the maximum and actual efficiencies. maximum efficiency of a heat engine can be found as:
η(max) = 1 - T₁/T₂
where,
η(max) = maximum efficiency = ?
T₁ = Sink Temperature = 300 K
T₂ = Source Temperature = 400 K
Therefore,
η(max) = 1 - 300 K/400 K
η(max) = 0.25 = 25%
Now, we calculate the actual frequency of the engine:
η = W/Q
where,
W = Net Work = 250 KJ
Q = Heat Received = 750 KJ
Therefore,
η = 250 KJ/750 KJ
η = 0.333 = 33.3 %
η > η(max)
The actual efficiency of a heat engine can never be greater than its Carnot efficiency or the maximum efficiency.
<u>Therefore, the claim is not valid or reasonable.</u>