Answer:
false
Explanation:
Even small environmental changes have large effects because small things become bigger
Answer:
300 K
Explanation:
First, we have find the specific heat capacity of the unknown substance.
The heat gained by the substance is given by the formula:
H = m*c*(T2 - T1)
Where m = mass of the substance
c = specific heat capacity
T2 = final temperature
T1 = initial temperature
From the question:
H = 200J
m = 4 kg
T1 = 200K
T2 = 240 K
Therefore:
200 = 4 * c * (240 - 200)
200 = 4 * c * 40
200 = 160 * c
c = 200/160
c = 1.25 J/kgK
The heat capacity of the substance is 1.25 J/kgK.
If 300 J of heat is added, the new heat becomes 500 J.
Hence, we need to find the final temperature, T2, when heat is 500 J.
Using the same formula:
500 = 4 * 1.25 * (T2 - 200)
500 = 5 * (T2 - 200)
100 = T2 - 200
=> T2 = 100 + 200 = 300 K
The new final temperature of the unknown substance is 300K.
The troposphere is the lowermost layer of the Earth's atmosphere. Most of the weather phenomena, systems, convection, turbulence and clouds occur in this layer, although some may extend into the lower portion of the stratosphere.
1. B
2. A
3. B
4. C
5. heterogeneous
6. element
7. do
8. true
9. true
10. true
the frequency (in hz) of these vibrations if the car moves at 24.2 m/s is 605 HZ .
Calculation :
frequency = 
frequency = 
= 605 HZ
Frequency describes the number of waves passing through a particular location in a particular time. So if the wave takes 1/2 second to travel, the frequency is 2 per second. If it takes 1/100th of an hour, the frequency is 100 per hour.
Frequency is the number of occurrences of a repeating event per unit time. ... sometimes called time-frequency for clarity,
Learn more about frequency here : brainly.com/question/254161
#SPJ4