Answer: send the message underwater because a more dense medium would make the sound travel faster.
Explanation:
Dolphins communicate using compression waves - longitudinal waves. Longitudinal waves requires a medium to travel. A longitudinal wave transfers energy by the vibration of medium particles in the direction of the wave motion. Compression are the regions where density of the medium is higher and rarefaction is a low density region.
A longitudinal wave travels faster in a denser medium. It has maximum speed in solid and minimum in gas. Thus, to transfer message quickly to dolphin B., dolphin A should send the message underwater and not in air. This is because water has higher density than air. Molecules collide more quickly in water than in air and it takes less time for signal to travel.
If the force were constant or increasing, we could guess that the speed of the sardines is increasing. Since the force is decreasing but staying in contact with the can, we know that the can is slowing down, so there must be friction involved.
Work is the integral of (force x distance) over the distance, which is just the area under the distance/force graph.
The integral of exp(-8x) dx that we need is (-1/8)exp(-8x) evaluated from 0.47 to 1.20 .
I get 0.00291 of a Joule ... seems like a very suspicious solution, but for an exponential integral at a cost of 5 measly points, what can you expect.
On the other hand, it's not really too unreasonable. The force is only 0.023 Newton at the beginning, and 0.000067 newton at the end, and the distance is only about 0.7 meter, so there certainly isn't a lot of work going on.
The main question we're left with after all of this is: Why sardines ? ?
<span>You should deflect the
ball in order to maximize your speed on the skateboard.
Since this creates a larger impulse, you want to deflect the ball. Splitting it
up into catching and throwing the ball may by something you can think of deflecting
the ball. First, you need to catch the ball, which in turn would push you
forward with some speed. (The speed we are talking about should obviously be
equal to option A, where you catch the ball). Now, throw the ball back to him
since these two processes are equal to deflecting the ball. Throwing a mass away
from you would cause or enable you to move even fast.</span>
B
Assume north and east as two sides of a right angled triangle. magnitude of the distance is then given by the length of the hypotenuse which is 
where a = 1.2 km north
and b = 1.6 km east
magnitude = 2 km
Direction is given by the angle between them, that is atan(a/b) = 36.86 deg north of east = 53.1 deg east of north.
Yeah yeah I just got a hold of you and I saw that you were doing a good job and I thought you were doing a good job and I thought you were doing a good job and I thought you were doing a good job and I thought you were doing a good job and I thought you were doing a good job and I thought you were doing a good job and I thought you were doing a good job and I thought you were doing a good job and I thought you were doing a good job and I thought you were doing a good job and I thought you were doing a good job.