The radius, r, of the child from the center of the wheel is
r = 1.3 m
The wheel makes one revolution in 4.2 s. Its angular velocity is
ω = (2π rad)/(4.2 s) = 1.496 rad/s
The linear speed of the child is the tangential velocity, given by
v = rω
= (1.3 m)*(1.496 rad/s)
= 1.945 m/s
Answer: 1.95 m/s (nearest hundredth)
Answer:
Explanation:
,,,,,,,,,,,,,,,,,,,,,,,,,,,
The relationship between frequency and wavelength for an electromagnetic wave is

where
f is the frequency

is the wavelength

is the speed of light.
For the light in our problem, the frequency is

, so its wavelength is (re-arranging the previous formula)
When a force is applied to the box , this will cause an acceleration to the box.
(force =mass×acceleration)
So the box has a constant acceleration and a changing velocity.
Answer:
Mass of the car is independent of gravity
Explanation:
Here, we want to state the reason why even though we have the acceleration due to gravity absent on the moon, it is still difficult to accelerate a car on a level horizontal level on the moon.
The answer to this is that the mass of the car that we want to accelerate is independent of gravity.
Had it been that gravity has an effect on the mass of the said car, then we might conclude that it will not be difficult to accelerate the car on a horizontal surface on the moon.
But due to the fact that gravity has no effect on the mass of the car to be accelerated, then the problem we have on earth with accelerating the car is the same problem we will have on the moon if we try to accelerate the car on a horizontal level surface.