Answer:
F = m g sin theta force accelerating block
m a = m g sin theta
a = 9.8 sin 24 = 3.99 m/sec^2
Answer:
a) F = 527.65 N, Force applied is upwards.
b)F = - 527.65 N, where, negative sign depicts Force is applied downwards.
Explanation:
Data provided:
Weight of the firefighter = 756 N
Mass of the firefighter = 756/9.8 = 77.14 Kg
Acceleration, a = 2.96 m/s²
a) In the absence of the pole the firefighter would have been moving down with an acceleration of 9.8 m/s (i.e the acceleration due to the gravity), but due to the presence of the pole the acceleration of the firefighter has been reduced. thus, a force is applied by the pole on the firefighter to reduce the acceleration.
therefore, we have
F = ma(net) = 77.14 × (9.8-2.96) = 527.65 N, Force applied is upwards.
B) According to the Newton's third law, the force will be equal and opposite to the force in the part a)
thus, we have
F = - 527.65 N
Answer:
Power in the circuit is 0.1 amp
Explanation:
The power in the circuit is given by the formula
P = V x I
Where P is Power, V is voltage supplied and I is current in circuit.
so, I = P/v
= 2/20
=0.1 A
Study more about power
<u>https://brainly.in/question/1063947</u>
<span>When an object moves in a circle, the acceleration points toward the center of the circle. This acceleration is called centripetal acceleration.
We can use a simple equation to find centripetal acceleration.
a = v^2 / r
We can use this same equation to find the speed of the car.
v^2 = a * r
v = sqrt { a * r }
v = sqrt{ (1.50)(9.80 m/s^2)(11.0 m) }
v = 12.7 m/s
The speed of the roller coaster is 12.7 m/s</span>