Answer:
The answer to the questions is;
In terms of standing waves, the listener moves from a location with high amplitude to one with lower amplitude or vibration (anti-node to node)
The distance 4.1 cm is equivalent to λ/4
Explanation:
For standing waves we have is a stationary wave comprising of two opposite direction moving waves that have equal amplitude and frequency, resulting in the superimposition of the waves. As such certain points are fixed along the wave path that is the peaks amplitude of the wave oscillation is constant at a particular point. A node occurring at a point and an anti-node occurring at another fixed point
When the listener moves 4.1 cm he or she has left the anti-node to the node hence the faintness of the sound
The distance from the node to the anti-node is 1/4 wavelength, or 1/4×λ
Therefore 4.1 cm is λ/4
We learned that We are in the disk of the Galaxy, about 5/8 of the way from the center.
<h3>What is the work of Harlow Shapley?</h3>
Shapley, who was headquartered in Boulder, Colorado, used Cepheid variable stars to estimate the size of the Milky Way Galaxy and its position relative to the Sun. In 1953, he published his "liquid water belt" theory, today known as the concept of a livable zone.
There are many stars, grains of dust, and gas in the Milky Way. It is known as a spiral galaxy because, from the top or bottom, it would appear to be whirling like a pinwheel. About 25,000 light-years from the galaxy's nucleus, the Sun is situated on one of the spiral arms.
Approximately 5/8 of the way from the galaxy's nucleus, we are in the disc. William Herschel believed that the Sun and Earth were about in the middle of the vast cluster of stars known as the Milky Way.
To learn more about Harlow Shapley's original estimate go to - brainly.com/question/28145909
#SPJ4
Answer:
Yes cause he walks 6.7 miles
Answer:
(a) 1 : 2
(b) same
Explanation:
Let the mass of puck A is m and the mass of puck B is 2 m.
initial speed for both the pucks is same as u and the distance is same for both is s.
let the tension is T for same.
The kinetic energy is given by

(a) As the speed is same, so the kinetic energy depends on the mass.
So, kinetic energy of A : Kinetic energy of B = m : 2m = 1 : 2
(b) A the distance s same so the final velocities are also same.