Answer:
592 K or 319° C
Explanation:
From the statement of Charles law we know that the volume of a given mass of gas is directly proportional to its absolute temperature at constant pressure. Thus;
V1/T1= V2/T2
Initial volume V1 = 1.75 L
Initial temperature T1= 23.0 +273 = 296 K
Final volume V2= 3.50 L
Final temperature T2 = the unknown
T2= V2T1/V1= 3.50 × 296 / 1.75
T2 = 592 K or 319° C
This problem is requiring the empirical formula for CaCO₃, which is its molecular formula, and turns out to be equal, this is A. CaCO3 according to the following:
<h3>Empirical formulas:</h3><h3 />
In chemistry, molecular formulas show both the actual type and number of atoms in a chemical compound, based on the elements across the periodic table and the subscripts standing for the number of atoms in the compound.
However, the empirical formula is a reduced expression of the molecular one, which shows the minimum number of atoms in a compound after simplifying to the smallest whole numbers.
In such a way, since the given compound is CaCO₃ and both Ca and C have a one as their subscript, it is not possible to simplify any further and therefore the empirical formula equals the molecular one this time, making the answer to be A. CaCO3.
Learn more about empirical formulas: brainly.com/question/1247523
Answer: 75%
Explanation:
The following information can be gotten from the question:
Waste = 70kg
Theoretical yield = 280kg
Therefore, the actual yield will be the difference between the theoretical yield and the waste which will be:
= 280kg - 70kg = 210kg
The percent yield will now be:
= Actual yield / Theoretical yield × 100
= 210/280 × 100
= 3/4 × 100
= 75%
Answer:
Hg(NO₃)₂(aq) + Na₂SO₄(aq) → 2NaNO₃(aq) + HgSO₄(s)
Moles of Hg(NO₃)₂ = 55.42 / 324.7 ==> 0.1707 moles
Moles of Na₂SO₄ = 16.642 / 142.04 ==> 0.1172 moles
Limiting reagent is Na₂SO₄ as it controls product formation
Moles of HgSO₄ formed = 0.1172 moles
= 0.1172 x 296.65
= 34.757g
Explanation:
Answer:
Wanna chat add me as a friend OR COME TO Snap (ADAMBELAL839)
Explanation: