Answer:
317.52 mi/hr
Explanation:
First convert Meters into miles as the answer is required in miles/ h
1000m = 0.62 mi
Now, convert second into hours
7.45s = 0.0001 hr
The speed of the boat would be
v = 0.62/0.0001
=317.52 mi/hr
"Electrostatic forces are attractive or repulsive forces between particles that are caused by their electric charges."
Answer:
= -32.53 m / s
this velocity is directed downwards
Explanation:
This is a free fall exercise, let's use the expression
= v_{oy}^{2} + 2 g (y -yo)
where we are assuming that there is friction with the air, as the body falls its initial velocity is zero
v_{oy} = √ 2g (y - y₀)
let's calculate
v_{y} = √ (2 9.8 (0-54.0))
= -32.53 m / s
this velocity is directed downwards
Here is the answer. What is happening at the atomic level to give rise to the observed energy is that t<span>he </span>atomic level<span> is affected by the movement of electrons so as to </span><span>give rise to the observed energy. Hope this answers your question. Have a great day!</span>
The average velocity of the car for the whole journey is 69.57 km/h.
The given parameters:
- <em>Length of the road, L = 320 km</em>
- <em>Distance covered = 240 km at 75 km/h</em>
- <em>time spent refueling, t₂ = 0.6 hr</em>
- <em>Final velocity, = 100 km/hr</em>
The time spent by the before refueling is calculated as follows;

The time spent by the car for the remaining journey;

The total time of the journey is calculated as follows;

The average velocity of the car for the whole journey is calculated as follows;

Learn more about average velocity here: brainly.com/question/6504879