Answer:
244mm
Explanation:
I₁ = 3.35A
I₂ = 6.99A
μ₀ = 4π*10^-7
force per unit length (F/L) = 6.03*10⁻⁵N/m
B = (μ₀ I₁ I₂ )/ 2πr .........equation i
B = F / L ..........equation ii
equating equation i & ii,
F / L = (μ₀ I₁ I₂ )/ 2πr
Note F/L = B = F
F = (μ₀ I₁ I₂ ) / 2πr
2πr*F = (μ₀ I₁ I₂ )
r = (μ₀ I₁ I₂ ) / 2πF
r = (4π*10⁻⁷ * 3.35 * 6.99) / 2π * 6.03*10⁻⁵
r = 1.4713*10⁻⁵ / 6.03*10⁻⁵
r = 0.244m = 244mm
The distance between the wires is 244m
the sun was stationary in the center of the universe and the earth revolved around it....
If the force and the motion are along the same direction (like it is here) then work is force*distance. The time doesn't come into play until you want the power used. So here
W=9.0*3.0=27J
Answer:

Explanation:
For this problem, we need to apply the formulas of constant accelerated motion.
To obtain the boat displacement we need to calculate the displacement because of the river flow and the displacement done because of the boat motor.
for the river:

for the boat:

So the final displacement is given by:

Considering conservation of momentum;
m1v1 + m2v2 = m3v3
In which,
m1 = mass of snowball 1 = 0.4 kg
v1 = velocity of snowball 1 = 15 m/s
m2 = mass of snowball 2 = 0.6 kg
v2 = velocity of snow ball 2 = 15 m/s
m3 = combined mass = 1 kg
v3 = velocity after comination
Therefore;
0.4*15 + 0.6*15 = 1*v3
v3 = 6+9 = 15 m/s
KE = 1/2mv^2
Then,
KE1 = 1/2*0.4*15^2 = 45 J
KE2 = 1/2*0.6*15^2 = 67.5 J
KE3 = 1/2*1*15^2 = 112.5 J
Therefore, KE3 (kinetic energy after collision) = K1+K2 {kinetic energy before collision). And thus it is 100%.