The correct answer is D. An average city
Explanation:
A neutron star differs from others due to its massive density, this means a lot of matter is compressed in a small area. Indeed, neutron stars have a mass of around 1.4 to 2.8 times the mass of the sun. But these are considerably small as they only measure around 20 kilometers, which is the size of an average city. Additionally, neutron stars are this dense because they are the result of a regular star exploding, which leads to a super-dense core, or neutron star. In this context, the mass of a neutron star is compressed to the size of an average city.
Answer:
W_apparent = 93.1 kg
Explanation:
The apparent weight of a body is the weight due to the gravitational attraction minus the thrust due to the fluid where it will be found.
W_apparent = W - B
The push is given by the expression of Archimeas
B = ρ_fluide g V
ρ_al = m / V
m = ρ_al V
we substitute
W_apparent = ρ_al V g - ρ_fluide g V
W_apparent = g V (ρ_al - ρ_fluide)
we calculate
W_apparent = 980 50 (2.7 - 0.8)
W_apparent = 93100 g
W_apparent = 93.1 kg
Answer:
proteins
Explanation:
protiens is the most difficult nutrient to brek down
One well-known application of density is determining whether or not an object will float on water. If the object's density is less than the density of water, it will float; if its density is less than that of water, it will sink.In fact, submarines dive below the surface of the water by emptying their ballast tanks
Answer:
The acceleration is about 9.8 m/s2 (down) when the ball is falling.
Explanation:
The ball at maximum height has velocity zero
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.8 m/s² (positive downward and negative upward)

The accleration 9.8 m/s² will always be acting on the body in opposite direction when the body is going up and in the same direction when the body is going down. The acceleration on the body will never be zero