Answer:
x = 1.6 + 1.7 t^2 omitting signs
a) at t = 0 x = 1.6 m
b) V = d x / d t = 3.4 t
at t = 0 V = 0
c) A = d^2 x / d t^2 = 3.4 (at t = 0 A = 3.4 m/s^2)
d) x = 1.6 + 1.7 * (4.4)^2 = 34.5 (position at 4.4 sec = 34.5 m)
Answer:
Explanation:
Let the thickness of the film is t and the refractive index of the material of film is n.
When light travels through a sheet of thickness t, the optical path traveled is nt.
When the path of one of slit is covered by a sheet of thickness t, the optical path becomes
x = ( n - 1) t
As the one fringe is shift, so the optical path changed by one wavelength.
i.e., x = λ
So, λ = ( n - 1) t

Answer:
Option C
Explanation:
Kinetic energy is the energy that the body possesses by virtue of its motion.
The formula for Kinetic energy is given by 
Using this formula let us find kinetic energy for the bodies given and find out which is the greatest
A) KE = 
B) KE =
C) KE = 
D) KE = 
Comparing these we find that 9mv^2 is the highest.
Hence option C is the answer.
Answer:
The force when θ = 33° is 1.7625 times of the force when θ = 18°
Explanation:
The force on a moving charge through a magnetic field is given by
F = qvB sin θ
q = charge of the moving particle
v = Velocity of the moving charge
B = Magnetic field strength
θ = angle between the magnetic field and the velocity (direction of the motion) of the moving charge
Because qvB are all constant, we can call the expression K.
F = K sinθ
when θ = 18°,
F = K sin 18° = 0.309K
when θ = 33°, let the force be F₁
F₁ = K sin 33° = 0.5446K
(F₁/F) = (0.5446K/0.309K) = 1.7625
F₁ = 1.7625 F
Hope this Helps!!!
The object will move if the forces are unbalanced.
Newtons second tells you that when a net force (the unbalanced force) is applied to and object it will produce an acceleration (movement) in direct proportion to the force and in inverse proportion to the mass of the object.