1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alona [7]
3 years ago
11

Which of the following correctly shows the chain of energy transfers that create surface currents on the ocean?

Physics
1 answer:
Colt1911 [192]3 years ago
8 0
D.
Solar energy is converted to wind energy which then drive surface currents.
You might be interested in
1. Indicate whether these objects or atoms are positively,<br> negatively or neutrally charged.
vovangra [49]

Answer:

Neutrally charged!!!!!!!!!!!!!!!!!!!!!

Explanation:

6 0
3 years ago
You drop a ball from a height of 2.0 m, and it bounces back to a height of 1.5 m. a) What fraction of its initial energy is lost
tangare [24]
The fraction of energy that is lost is 25%, it depends how fast the ball was going until it lost 25% of its energy, the gravitational energy was transferred into the kinetic energy that helped the ball bounce back
4 0
3 years ago
Two parallel-plate capacitors have the same plate area, but the plate gap in capacitor 1 is twice as big as capacitor 2. If capa
-BARSIC- [3]

Answer:

Capacitance of the second capacitor = 2C

Explanation:

\texttt{Capacitance, C}=\frac{\varepsilon_0A}{d}

Where A is the area, d is the gap between plates and ε₀ is the dielectric constant.

Let C₁ be the capacitance of first capacitor with area A₁ and gap between plates d₁.

We have    

              \texttt{Capacitance, C}_1=\frac{\varepsilon_0A_1}{d_1}=C

Similarly for capacitor 2

               \texttt{Capacitance, C}_2=\frac{\varepsilon_0A_2}{d_2}=\frac{\varepsilon_0A_1}{\frac{d_1}{2}}=2\times \frac{\varepsilon_0A_1}{d_1}=2C

Capacitance of the second capacitor = 2C

6 0
3 years ago
022 (part 1 of 4) 10.0 points A ball is thrown vertically upward with a speed of 24.5 m/s. How high does it rise? The accelerati
svetoff [14.1K]

1)

Answer:

Part 1)

H = 30.6 m

Part 2)

t = 2.5 s

Part 3)

t = 2.5 s

Part 4)

v_f = 24.5 m/s

Explanation:

Part 1)

initial speed of the ball upwards

v_i = 24.5 m/s

so maximum height of the ball is given by

H = \frac{v_i^2}{2g}

H = \frac{24.5^2}{2(9.80)}

H = 30.6 m

Part 2)

As we know that final speed will be zero at maximum height

so we will have

v_f - v_i = at

0 - 24.5 = (-9.8)t

t = 2.5 s

Part 3)

Since the time of ascent of ball is same as time of decent of the ball

so here ball will same time to hit the ground back

so here it is given as

t = 2.5 s

Part 4)

since the acceleration due to earth will be same during its return path as well as the time of the motion is also same

so here its final speed will be same as that of initial speed

so we have

v_f = 24.5 m/s

2)

Answer:

a = 9.76 m/s/s

Explanation:

As we know that the object is released from rest

so the displacement of the object in vertical direction is given as

y = \frac{1}{2}at^2

4.88 = \frac{1}{2}a(1^2)

a = 9.76 m/s^2

3)

Answer:

v = 29.7 m/s

Explanation:

acceleration of the rocket is given as

a = 90 m/s^2

time taken by the rocket

t = 0.33 min

final speed of the rocket is given as

v_f = v_i + at

v_f = 0 + (90)(0.33)

v_f = 29.7 m/s

4)

Answer:

Part 1)

y = 25.95 m

Part 2)

d = 6.72 m

Explanation:

Part 1)

As it took t = 2.3 s to hit the water surface

so here we will have

y = \frac{1}{2}gt^2

y = \frac{1}{2}(9.81)(2.3^2)

y = 25.95 m

Part 2)

Distance traveled by it in horizontal direction is given as

d = v_x t

d = 2.92 \times 2.3

d = 6.72 m

6 0
3 years ago
Astronauts use a centrifuge to simulate the acceleration of a rocket launch. The centrifuge takes 40.0 s to speed up from rest t
Vinvika [58]

Answer

Time period T = 1.50 s

time t = 40 s

r = 6.2 m

a)

Angular speed ω = 2π/T

                              = \dfrac{2\pi }{1.5}  

                              = 4.189 rad/s

Angular acceleration α = \dfrac{\omega}{t}

                                      = \dfrac{4.189}{40}

                                      = 0.105 rad/s²

Tangential acceleration a = r α = 6.2 x 0.105 = 0.651 m/s²

b)The maximum speed.

       v = 2πr/T

          = \dfrac{2\pi \times 6.2}{1.5}

          = 25.97 m/s

So centripetal acceleration.

        a = \dfrac{v^2}{r}

          = \dfrac{25.97^2}{6.2}

          =  108.781 m/s^2

          = 11.1 g    

in combination with the gravitation acceleration.

a_{total} = \sqrt{(11.1g)^2+g^2}

a_{total}= 11.145 g

6 0
4 years ago
Other questions:
  • A hydraulic lift is made by sealing an ideal fluid inside a container with an input piston of cross-sectional area 0.004 m2 , an
    7·1 answer
  • The adjustments that your eyes make as they look from objects near to objects far away or from objects far away to objects close
    13·1 answer
  • A force of 34N stretches a very light ideal spring 0.73 m from equilibrium, What is the force constant (spring constant) of the
    5·1 answer
  • Apply a force of 50 N right to the box. Describe the motion of the box using physics terms (i.E. Velocity, acceleration, displac
    5·1 answer
  • Hydrogen is a nonmetal with many nonmetal properties. Why is it on the periodic table with the metals in Group 1?
    12·1 answer
  • What do fast-twitch and slow-twitch muscle fibers share in common
    10·1 answer
  • Atoms in Group 18 elements are inert (chemically unreactive) because ___________________________. A they combined to form molecu
    5·2 answers
  • A 2kg watermelon is dropped from a 4m tall roof a) use the appropriate kinematic equations to determine the instantaneous veloci
    10·1 answer
  • A particle of mass moves under a force given bywhere and are unit vectors in the and directions. The particle is placed at the o
    15·1 answer
  • Write a rule for the sequence. 3, -3, -9, -15. A. Start with 3 and add -6 repeatedly B. Start with -6 and add 3 repeatedly C. St
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!