Answer:
true b and c
Explanation:
n the electromechanical transitions of the atoms the relationship must be fulfilled
= R (1 / nf - 1 / no²)
where for the final state nf = 1 giving in the case of hydrogen the Lymma series whose smallest wavelength is lam = 122 nm with nf = 1 and there are a series of spectral lines for each value of n of the final state
in the case of sodium so well it has a transition from an excited state to the kiss state (bad)
Now let's review the different proposals
a) False. The electronic potential for sodium is much lower than for hydrognosia
b) True
c) True
d) true
Refer to the diagram shown below.
d = distance (miles) from Alphaville to Betaville.
v = speed (mph) of the plane with no wind.
With no wind:
The time taken to travel a distance of 2d is 4 hrs, 48 min = 4.8 hrs.
Therefore
2d/v = 4.8
v = 2d/4.8 = 0.4167d mph (1)
With the wind:
The velocity from Alphaville to Betaville is (v + 100) mph.
The time of travel is
t₁ = d/(v+100) h
The velocity from Betaville to Alphaville is (v - 100) mph.
The time of travel is
t₂ = d/)v-100) h
Because the return trip takes 5 hours, therefore
t₁ + t₂ = 5

(2)
From (1), obtain
2(0.4167)d² = 5[(0.4167d)² - 10⁴]
0.8334d² = 0.8682d² - 5 x 10⁴
0.0348d² = 5 x 10⁴
d = 1198.7 mi
Answer: 1199 miles (nearest integer)
I don't know if you need to complete this question or do it otherwise, however, I managed to find on the Internet on several places this completion of your sentence:
<span>Electric current flows through a long rod generating thermal energy at a uniform volumetric rate of q = 2 x 10</span>⁶ W/m³.
I'm not sure whether that is the answer you were looking for, but that's what I found.