Answer:
The linear momentum of a particle with mass m moving with velocity v is defined as
p = mv (7.1)
Linear momentum is a vector . When giving the linear momentum of a particle you must
specify its magnitude and direction. We can see from the definition that its units must be
kg·m
s
. Oddly enough, this combination of SI units does not have a commonly–used named so
we leave it as kg·m
s
!
The momentum of a particle is related to the net force on that particle in a simple way;
since the mass of a particle remains constant, if we take the time derivative of a particle’s
momentum we find
dp
dt = m
dv
dt = ma = Fnet
so that
Fnet =
dp
dt (7.2)
Answer: 5,640 s (94 minutes)
Explanation:
the tangential speed of the HST is given by
(1)
where
is the length of the orbit
r is the radius of the orbit
T is the orbital period
In our problem, we know the tangential speed: . The radius of the orbit is the sum of the Earth's radius and the distance of the HST above Earth's surface:
So, we can re-arrange equation (1) to find the orbital period:
Dividing by 60, we get that this time corresponds to 94 minutes.
Water<span> is </span>denser<span> than </span>alcohol<span> because its molecules can pack tightly together, which means that it has </span>more<span> mass in the same volume than </span>alcohol<span> </span>
Explanation:
As the earth travels around the sun in the elliptical orbit it must also be know that the axis of the earth is tilted as well.
- So when the earth is at the farthest point and the tilt of the earth's axis is towards the sun in that case the sun rays always incident on the surface of the earth near the poles and hence there is sunlight for the 24 hours of the day. But the intensity of these rays is very low because of the their slanted angle of incident. In other words the same sun rays cover a larger area and the luminous intensity is reduced.
- When the earth is near to the sun we have an increased average temperature of the day during that phase giving us an experience of summer season and vice-versa is the condition in winter seasons. The tilt of the earths axis is responsible for variation in extremities of the seasons with respect to the geographical location.
The solution is:
Paige's force is (somewhat) against the direction of motion: Work = F * d Where F is the force; andd is the distance
Our f is 64 N and our distance is 20 and -3.6Plugging that in our equation will give us:
= 64N * cos20º * -3.6m = -217 J