Answer:
1.43 * 10^-2
Explanation:
Firstly, we need to get the ionization equation for lead I chloride. We can then get the Initial, change and equilibrium table of the lead and chloride ions that can help us calculate the molar solubility. This is shown as follows:
PbCl2(s) --> Pb2+(aq) + 2 Cl-(aq)
This shows that one mole of lead ii chloride will yield 1 mole of the lead ion and 2 moles of the chloride ion.
The ICE table is shown below:
Pb2+ 2Cl-
Initial 0.00 0.00
Change +s +2s
Equilibrium s 2s
Ksp = [Pb2+][Cl-]^2
Ksp = [s][2s]^2
Ksp = 4s^3
s^3 = Ksp/4
s = cube.root [Ksp/4]
s = cube.root[1.17 * 10^-5/4]
s = 1.43 * 10^-2
It is commonly known that our Galaxy rotates upon the sun because of gravity. The diagrams' arrows sort of describe it. Id suggest Gravity as the answer.
Answer:
B. Lower than 100 °C because hydrogen sulfide has dipole-dipole interactions instead of hydrogen bonding.
Explanation:
Intermolecular bonds exists between seperate molecules or units. Their relative strength determines many physical properties of substances like state of matter, solubility of water, boiling point, volatility, viscosity etc. Examples are Van der waals forces, hydrogen bonds and crystal lattice forces.
In hydrogen sulfide, the intermolecular bond is a dipole-dipole attraction which is a type of van der waals attraction. It occurs as an attraction between polar molecules. These molecules line such that the positive pole of one molecule attracts the negative pole of another.
In water, the intermolecular bond is hydrogen bonds in which an electrostatic attraction exists between the hydrogen atom of one molecule and the electronegative atom of a neighbouring molecule.
Based on their relative strength:
Van der Waals forces < Hydrogen bonding forces < crystal lattice
This makes water boil at a higher temperature than hydrogen sulfide.