Answer:
an atom
Explanation: atom then matter
Answer:
a= g = - 9.81 m/s2.
The following equations will be helpful:
a = (vf - vo)/t d = vot + 1/2 at2 vf2 = vo2 + 2ad
When you substitute the specific acceleration due to gravity (g), the equations are as follows:
g = (vf - vo)/t d = vot + 1/2 gt2 vf2 = vo2 + 2gd
If the object is dropped from rest, the initial velocity ("vi") is zero. This further simplifies the equations to these:
g = vf /t d = 1/2 gt2 vf2 = 2gd
The sign convention that we will use for direction is this: "down" is the negative direction. If you are given a velocity such as -5.0 m/s, we will assume that the direction of the velocity vector is down. Also if you are told that an object falls with a velocity of 5.0 m/s, you would substitute -5.0 m/s in your equations. The sign convention would also apply to the acceleration due to gravity as shown above. The direction of the acceleration vector is down (-9.81 m/s2) because the gravitational force causing the acceleration is directed downward.
hope this info helps you out!
Explanation:
For each object, the initial potential energy is converted to rotational energy and translational energy:
PE = RE + KE
mgh = ½ Iω² + ½ mv²
For the marble (a solid sphere), I = ⅖ mr².
For the basketball (a hollow sphere), I = ⅔ mr².
For the manhole cover (a solid cylinder), I = ½ mr².
For the wedding ring (a hollow cylinder), I = mr².
If we say k is the coefficient in each case:
mgh = ½ (kmr²) ω² + ½ mv²
For rolling without slipping, ωr = v:
mgh = ½ kmv² + ½ mv²
gh = ½ kv² + ½ v²
2gh = (k + 1) v²
v² = 2gh / (k + 1)
The smaller the value of k, the higher the velocity. Therefore:
marble > manhole cover > basketball > wedding ring
A bonds with elements from b
Use the Second Law of Newton, which states that Net Force = mass times acceleration
F = m * a
F = 50 kg * 1.5 m/s^2 = 75 N
Answer: option C