Answer:
The fact that most alpha particles went straight through the foil is because the atom is mostly empty space.
Those that passed straight through did so because they didn't encounter any nuclei.
Explanation:
A
Is the correct answer
I’m 95% sure
Probably sodium Na because it has a similar atomic mass and number
With all of the information given (pressure, volume, temperature, and the molar mass), we need a formula that relates this all together. The formula we need is the ideal gas law, PV=nRT. Since the pressure is defined in millimeters of mercury, we need the R value that correlates with this, which is 62.4; on top of this, we need the temperature in Kelvin - simply add 273.15 to convert from Celsius. With all of this information, simply plug-and-chug:
PV=nRT
(800)(3.7) = n(62.4)(37 + 273.15)
n = 0.1529 moles
Finally, the problem is asking the amount of air in grams. We have moles, so all we need to do is multiply that value by the molar mass.
0.1529 moles x 29 grams per mole =
4.435 grams of air
The balloon has 4.435 grams of air inside it.
Hope this helps!
<h3>
Answer:</h3>
= 5.79 × 10^19 molecules
<h3>
Explanation:</h3>
The molar mass of the compound is 312 g/mol
Mass of the compound is 30.0 mg equivalent to 0.030 g (1 g = 1000 mg)
We are required to calculate the number of molecules present
We will use the following steps;
<h3>Step 1: Calculate the number of moles of the compound </h3>

Therefore;
Moles of the compound will be;

= 9.615 × 10⁻5 mole
<h3>Step 2: Calculate the number of molecules present </h3>
Using the Avogadro's constant, 6.022 × 10^23
1 mole of a compound contains 6.022 × 10^23 molecules
Therefore;
9.615 × 10⁻5 moles of the compound will have ;
= 9.615 × 10⁻5 moles × 6.022 × 10^23 molecules
= 5.79 × 10^19 molecules
Therefore the compound contains 5.79 × 10^19 molecules