Answer:
dJ = 1.7 m
Explanation:
The Equation of the Balancing the moments in the center of the seesaw is like this:
∑Mo = 0
Mo = F*d
Where:
∑Mo : Algebraic sum of moments in the center(o) of the balance
Mo : moment in the o point ( N*m)
F : Force ( N)
d : distancia of the force to the the o point ( N*m)
Data
mA = 60 kg : mass of the Anna
mJ = 70 kg : mass of theJon
dA = 2 m : Distance from Anna to the center of the seesaw
g: acceleration due to gravity
Calculation of the distance from Jon to the center of the seesaw (dJ)
∑Mo = 0 WA : Ana's weight , WJ : Jon's weight
W = m*g
(WA)(dA) - (WJ) (dJ) = 0
(mA*g)(dA) - (mJ*g)(dJ) = 0
We divide by g the equation:
(mA)(dA) - (mJ)(dJ)= 0
(mA)(dA) = (mJ)(dJ)


dJ = 1.7 m
The frictional force is given by F = μmg
<span>where μ is the coeficient of friction. </span>
<span>Work done by frictional force = Fd = μmgd </span>
<span>Kinetic energy "lost" = 1/2 mv² </span>
<span>Fd = μmgd = 1/2 mv² </span>
<span>The m's cancel μgd = v² / 2 </span>
<span>d = v² / 2μg </span>
<span>d = 8² / 2(0.41)(9.8) </span>
<span>d = 32 / (0.41)(9.8) </span>
<span>d = 7.96 </span>
<span>Player slides 8 m . </span>
<span>Note. In your other example μ = 0.46 and v = 4 m/s </span>
<span>d = v² / 2μg </span>
<span>= 4² / 2(0.46)(9.8) </span>
<span>= 8 / (0.46)(9.8) </span>
<span>= 1.77 or 1.8 m.
</span>
Hope i Helped :D
A free market economy<span> has two key </span>advantages<span>. First, it allows for individuals to innovate. Individuals have the freedom to create new ideas, new products, and new services to sell for profit. They are not required to only produce what the government tells them to produce.</span>
Radiant energy is the energy of electromagnetic and gravitational radiation