Here we have to compare the Bohr atomic model with electron cloud model.
In the Bohr's atomic model the electrons of an element is assumed to be particle in nature. Which was unable to explain the deBroglie' hypothesis or the uncertainty principle and has certain demerits.
The uncertainty principle reveals the wave nature of the electrons or electron clod model. The Bohr condition of a stable orbits of the electron can nicely be explained by the electron cloud model, the mathematical form of which is λ = nh/mv, where, λ = wavelength, n is the integral number, h = Planck's constant, m = mass of the electron and v = velocity of the electron.
The integral number i.e. n is similar to the mathematical form of Bohr's atomic model, which is mvr = nh/2π. (r = radius of the orbit).
Thus, the electron cloud model is an extension of the Bohr atomic model, which can explain the demerits of the Bohr model. Later it is revealed that the electron have both particle and wave nature. Which is only can explain all the features of the electrons around a nucleus of an element.
Rust does not have the properties to catch onto flames. However, if you light it on fire, then it would probably catch in flames but not instantly and will not continue to burn unless you have soaked it in oil or flammable object or substance. :) Hope this helps!
We see that is the <em>structure </em>of graphite it possess these attributes.
Graphite
Option A
<h3>Electricity</h3>
Generally, he conduction of electricity is do by elements with free talent electron after bonding.
Therefore, it is save to say that the <em>solid </em>that possess the attributes that allows for conduction will end up conducting.
Hence, we see that is the <em>structure </em>of graphite it possess these attributes.
Graphite
Option A
For more information on Electricity visit
brainly.com/question/9383604
Answer:
The correct answer would be - 2.4KJ or, 2400J
Explanation:
Given:
heat capacity of liquid water - 4.18 J/g·°C
heat of vaporization - 40.7 kJ/mol
Mass of water = 1g
Moles of water = mass/molar mass
= 1g/18.016g
= 0.055 moles
Then,
Total heat required = q1(to raise the temperature to 100) + q2(change from the liquid phase to gas/steam)
= m *s*dt + moles * heat of vaporization
= (1g * 4.18 j/gc * (100-67)) + 0.055* 40.7 KJ
= 137.94J + 2.26KJ
=0.138KJ + 2.26KJ
=2.4KJ or, 2400J
Thus, the correct answer would be - 2.4KJ or, 2400J