1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tigry1 [53]
3 years ago
9

When the car carrying the unbelted driver crashes, what brings the driver to a stop

Physics
1 answer:
pychu [463]3 years ago
4 0
When the driver is not wearing a seat belt and the car hits a brick wall,
the driver keeps going and doesn't stop, (because of the inertia of the
driver's body). 

-- If the driver is lucky, the car is going slow enough, AND it has a
driver-side airbag, AND the airbag works, AND it inflates fast enough,
AND it cushions the driver well enough to avoid the driver's death.

-- If an airbag doesn't stop the driver, then one or more of these brings
the driver to a stop:

... the car's engine block crashing in through the dashboard 
... the steering wheel
... the windshield
... the same brick wall that stopped the car.

Any one of these is probably fatal.
You might be interested in
How much of earths gravitational force acts on everyone and everything onboard of the international space station?
liraira [26]

B) Approx. 90%

The actual value is 0.89g

4 0
3 years ago
Find the voltage change when: a. An electric field does 12 J of work on a 0.0001-C charge. b. The same electric field does 24 J
kondaur [170]

Explanation:

Given that,

(a) Work done by the electric field is 12 J on a 0.0001 C of charge. The electric potential is defined as the work done per unit charged particles. It is given by :

V=\dfrac{W}{q}

V=\dfrac{12}{0.0001}

V=12\times 10^4\ Volt

(b) Similarly, same electric field does 24 J of work on a 0.0002-C charge. The electric potential difference is given by :

V=\dfrac{W}{q}

V=\dfrac{24}{0.0002}

V=12\times 10^4\ Volt

Therefore, this is the required solution.

7 0
3 years ago
Describe the difference between balanced forces and action/reaction forces
Alecsey [184]
 Balanced forces<span> act on the same object and </span>Action-Reaction forces<span> act on different objects.</span>
5 0
3 years ago
Read 2 more answers
A solid cylinder is released from the top of an inclined plane of height 0.81 m. From what height, in meters, on the incline sho
Jlenok [28]

Answer:

same 0.81m

Explanation:

in this problem if we assume there no resistance of any sort. and we apply the energy conservation

change in Potential energy = change in kinetic energy

mgh = 0.5mv^2

gh = 0.5v^2

the above relation suggests that the speed at the bottom is only depending on the height it is released from not on the shape, mass or radius.

so at the bottom

put h = 0.81m

9.81 * 0.81 * 2 = v^2

v=3.99 m/s

both CYLINDER and SPHERE will have same velocity at the bottom if released from the same height irrespective of shape and size

3 0
3 years ago
A mass of 1 slug, when attached to a spring, stretches it 2 feet and then comes to rest in the equilibrium position. Starting at
Vesna [10]

Answer:

Y=(\dfrac{3}{16}+t \dfrac{3}{8})e^{-2t}-\dfrac{3}{16}cos 4t

Explanation:

Given that m= 1 slug and given that spring stretches by 2 feet so we can find the spring constant K

mg=k x

1 x 32= k x 2

K=16

And also give that damping force is 8 times the velocity so damping constant C=8.

We know that equation for spring mass system

my''+Cy'+Ky=F

Now by putting the values

1 y"+8 y'+ 16y=6 cos 4 t ----(1)

The general solution of equation Y=CF+IP

Lets assume that at steady state the equation of y will be

y(IP)=A cos 4t+ B sin 4t

To find the constant A and B we have to compare this equation with equation 1.

Now find y' and y" (by differentiate with respect to t)

y'= -4A sin 4t+4B cos 4t

y"=-16A cos 4t-16B sin 4t

Now put the values of y" , y' and y in equation 1

1 (-16A cos 4t-16B sin 4t)+8( -4A sin 4t+4B cos 4t)+16(A cos 4t+ B sin 4t)=6sin4 t

So by comparing the coefficient both sides

-16A+32B+16A=0  So B=0

-16 B-32 A+16B=6  So A=-3/16

y=-3/16 cos 4t

Now to find the CF  of differential equation 1

y"+8 y'+ 16y=6 cos 4 t

Homogeneous version of above equation

m^2+8m+16=0

So CF =(C_1+tC_2)e^{-2t}

So the general equation

Y=(C_1+tC_2)e^{-2t}-3/16 cos 4t

Given that t=0 Y=0 So

C_1=\dfrac{3}{16}

t=0 Y'=0 So

C_2 =\dfrac{3}{8}

Y=(\dfrac{3}{16}+t \dfrac{3}{8})e^{-2t}-\dfrac{3}{16}cos 4t

The above equation is the general equation for motion.

3 0
3 years ago
Other questions:
  • if you have an isotope of the element carbon (C) that has the mass number of 14, what other information would help you determine
    12·1 answer
  • A(n) _____ wave is a disturbance in matter that transfers
    7·1 answer
  • How can you safely experiment with plants during a scientific investigation?
    10·2 answers
  • An L-R-C series circuit is constructed using a 175Ω resistor, a 12.5μF capacitor, and an 8.00-mH inductor, all connected across
    14·1 answer
  • Two massive, positively charged particles are initially held a fixed distance apart. When they are moved farther apart, the magn
    7·1 answer
  • Suppose a ray of light traveling in a material with an index of refraction na reaches an interface with a material having an ind
    7·1 answer
  • Is a frame of reference usually moving
    6·1 answer
  • 5. Three children are at work. One is pushing a chair, another is pushing the sofa and the third one is pushing an empty trolley
    10·1 answer
  • discuss four contributing factors that may lead to an increase of learners abusing substance in scools​
    8·1 answer
  • During the photoelectric effect experiment, a photon is emitted with 5.73 x10-20 J of kinetic energy. If the work function of th
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!