Answer:
k = 49 N/m
Explanation:
Given that,
Mass, m = 250 g = 0.25 kg
When the mass is attached to the end of the spring, it elongates 5 cm or 0.05 m. We need to find the spring constant. Let it is k.
The force due to mass is balanced by its weight as follows :
mg=kx

So, the spring constant of the spring is 49 N/m.
The resultant vector is 11√2 km due north east.
<h3><u>Explanation:</u></h3>
The vector is a type of quantity which has both magnitude and direction. This quantities when expressed needs to specify both magnitude and direction.
We need to calculate the magnitude and direction separately.
Here firstly for the magnitude,
The magnitudes are both 11 km and they are at right angles to each other.
So, the resultant magnitude = √(11² +11²) km
=11√2 km
Now for the direction, one vector is due north and the other is due east.
So the resultant vector is due north east.
So the final vector is 11√2 km due North-East.
Answer:

Explanation:
Since,
<h3><u>1 kWh = 1 unit</u></h3>
So,
1.6 kWh = 1.6 units
If,
<h3>1 unit = 9p</h3>
1.6 units = 9p × 1.6
1.6 units = 14.4p
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Answer:
Statement 1 and 3 are correct.
Explanation:
1. The mass moves downward, so the net acceleration of the block is straight downward.
2.The mass is sliding through the globe, so only the force of gravity is acting on the mass which pulls it in downward direction. The force of gravity has two components [mg sin∅] and [mg cos∅].
Answer:
creo que es la a ..........