Answer:
Momentum is always conserved, and kinetic energy may be conserved.
Explanation:
For an object moving on a horizontal, frictionless surface which makes a glancing collision with another object initially at rest on the surface, the type of collision experienced by this objects can either be elastic or an inelastic collision depending on whether the object sticks together after collision or separates and move with a common velocity after collision.
If the body separates and move with a common velocity after collision, the collision is elastic but if they sticks together after collision, the collision is inelastic.
Either ways the momentum of the bodies are always conserved since they will always move with a common velocity after collision but their kinetic energy may or may not be conserved after collision, it all depends whether they separates or stick together after collision and since we are not told in question whether or not they separate, we can conclude that their kinetic energy "may" be conserved.
Answer:
D. −F
Explanation:
the rest of the answers are
2/3F
The force is represented as a positive quantity and is repulsive.
Electrostatic force is inversely proportional to the square of the distance.
The direction of the force changes, and the magnitude of the force quadruples.
hope this helps sorry if i was too late! :)
A). It takes air in from outside the body.
A law has always been observed to be true
Given that
Work = 600,000 J ,
distance(S) = 500 m ,
mass (m) = 250 Kg ,
Determine the velocity of car (v) = ?
We know that,
Work = Force × distance
=> Force = Work ÷ distance
= 600,000 ÷ 500
= 500 N .
Also Force F = m.a ; from Newtons II law
500 = 250 × a
a = 2 m/s.
<em>Final Velocity from the given formula </em>
V² = u² + 2.a.s
= 0 + 2 × 2 × 500
= \sqrt{2000}
<em> v = 44.7 m/s</em>