I would say water; water is extremely polar, and this is why it can break one of the strongest bonds, ionic bonds. NaCl, as you probably know, is a salt, and dissolves in water. However, the ionic bond holding the Na+ and the Cl- is extremely strong; the boiling point of NaCl is at 1413 degrees celcius (water is at 100 degrees celcius). This means that it requires A LOT of energy to break the bond, but water is able to dissolve and break the bond very easily. It is very polar, so I would answer your question with water. And the bond connecting the H and the O is a covalent bond.
a) A combound which contains only Carbon and Hydrogen. There are covalent bonds between atoms. Hydrogen form one single bond and Carbon forms four covalent bonds. Carbon bonds can be single, double or triple bonds.
All hydrocarbons are organic compounds, but organic compound can include atoms of other elements.
b) Alkyne has a covalent triple bond between two carbon atoms. Simplest alkyne is ethyne HCCH.
b) Alkane contains only Carbon and Hydrogen and there are single bonds
between atoms. Simplest alkane is methane CH4.
c) An alkene has one double bond between Carbon atoms. Simplest
alkene is ethene H2C=CH2.
We have to know final temperature of the gas after it has done 2.40 X 10³ Joule of work.
The final temperature is: 75.11 °C.
The work done at constant pressure, W=nR(T₂-T₁)
n= number of moles of gases=6 (Given), R=Molar gas constant, T₂= Final temperature in Kelvin, T₁= Initial temperature in Kelvin =27°C or 300 K (Given).
W=2.4 × 10³ Joule (Given)
From the expression,
(T₂-T₁)=
(T₂-T₁)= 
(T₂-T₁)= 48.11
T₂=300+48.11=348.11 K= 75.11 °C
Final temperature is 75.11 °C.
It was due to the metal foil in which the alpha particles can't even pass through. This experiment conducted by Rutherford led to the discovery of protons.
Answer:
Lathanum .
Atomic number = 57
Symbol = La
Atomic weight = 138.9
No of energy orbitals = 6
Electronic configuration
![[Xe]6s^25d^1](https://tex.z-dn.net/?f=%5BXe%5D6s%5E25d%5E1)