Answer:
The cube A is magnesium, the cube B is aluminum and the cube C is silver.
Explanation:
Density is defined by the expression
where m is the mass and V is the volume, therefore:
- Density of the cube A:

- Density of the cube B:

- Density of the cube C:

Solving for mass:



And all the three cubes have the same mass, so:

Therefore:
(Eq.1)
(Eq.2)
Solving for
in Eq.1:

Replacing values for the volume:


As we know the density of the aluminum is
, so replacing this value for
:


that is the density of the magnesium.
Solving for
in Eq.2:





That is the density of the silver.
Therefore the cube A is magnesium, the cube B is aluminum and the cube C is silver.
Answer:
Explanation:
You need the conversion factor to convert the value of 12.33 kPa to milimiters of mercury, mmHg.
The converstion factors are looked at tables, which today you can find in internet.
Since the conversions between kPa and atm and between atm and mmHg are more widely known, I will show the conversion using those relations:
⇒ 101.325 kPa = 760 mmHg
Then, dividing both sides by 101.325 kPa you get the conversion factor:
- 1 = 760 mmHg / 101.325 kPa
Now, multiply 12.33 kPa by that conversion factor:
- 12.33 kPa × 760 mmHg / 101.325 kPa = 92.48 mmHg ← answer
Answer:
too hard middle school student just need points nothing else
Answer:
When you heat an atom, some of its electrons are "excited* to higher energy levels. When an electron drops from one level to a lower energy level, it emits a quantum of energy. ... The different mix of energy differences for each atom produces different colours. Each metal gives a characteristic flame emission spectrum.
Explanation:
Answer:
The products are Al(NO₃)₃(aq) and H₂(g).
Al(s) + 3 HNO₃(aq) ⇒ Al(NO₃)₃(aq) + 1.5 H₂(g)
Explanation:
Let's consider the reaction between aluminum and nitric acid. This is a single replacement reaction, in which Al replaces H in HNO₃ to form aluminum nitrate. The unbalanced reaction is:
Al(s) + HNO₃(aq) ⇒ Al(NO₃)₃(aq) + H₂(g)
We start balancing N atoms by multiplying HNO₃ by 3.
Al(s) + 3 HNO₃(aq) ⇒ Al(NO₃)₃(aq) + H₂(g)
Finally, we get the balanced equation multiplying H₂ by 1.5.
Al(s) + 3 HNO₃(aq) ⇒ Al(NO₃)₃(aq) + 1.5 H₂(g)