Answer:
The recurve bows
Explanation:Vote brainliest plz
Answer:
V1 = 2221.33 L
Explanation:
The system is about a ideal gas. Then you can use the equation for ideal gases for a volume V1, temperature T1 and pressure P1:
(1)
And also for the situation in which the variables T, V and P has changed:
(1)
R: constant of ideal gases = 0.082 L.atm/mol.K
For both cases (1) and (2) the number of moles are the same. Next, you solve for n in (1) and (2):

Next, you equal these equations an solve for T2:

Finally you replace the values of P2, V2, T1 and T2:

Hence, the initial volume of the gas is 2221.33 L
The concept required to solve this problem is hydrostatic pressure. From the theory and assuming that the density of water on that planet is equal to that of the earth
we can mathematically define the pressure as

Where,
= Density
h = Height
g = Gravitational acceleration
Rearranging the equation based on gravity

The mathematical problem gives us values such as:



Replacing we have,


Therefore the gravitational acceleration on the planet's surface is 
Answer:
Explanation:
Newtons third law says an applied force will produce an equal but opposite force.
