1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dimaraw [331]
3 years ago
13

A figure shows a vertically moving block on the end of a cord. The graph next to the figure gives the vertical velocity componen

t vy as a function of time to. The block's mass is 5.00kg. What is the tension in the cord?
Physics
1 answer:
Sergio [31]3 years ago
3 0
It should be 2/9/10 in functional form
You might be interested in
A 500 kg block is attached to a horizontal spring that is at its equilibrium length, and whose force constant is 30 N/m. The blo
m_a_m_a [10]

Answer:

x = 0.396 m

Explanation:

The best way to solve this problem is to divide it into two parts: one for the clash of the putty with the block and another when the system (putty + block) compresses it is   spring

Data the putty has a mass m1 and velocity vo1, the block has a mass m2 .  t's start using the moment to find the system speed.

Let's form a system consisting of putty and block; For this system the forces during the crash are internal and the moment is preserved. Let's write the moment before the crash

    p₀ = m1 v₀₁

Moment after shock

    p_{f} = (m1 + m2) v_{f}

   p₀ = p_{f}

   m1 v₀₁ = (m1 + m2) v_{f}

  v_{f} = v₀₁ m1 / (m1 + m2)

   v_{f}= 4.4 600 / (600 + 500)

  v_{f} = 2.4 m / s

With this speed the putty + block system compresses the spring, let's use energy conservation for this second part, write the mechanical energy before and after compressing the spring

Before compressing the spring

   Em₀ = K = ½ (m1 + m2) v_{f}²

After compressing the spring

   E_{mf} = Ke = ½ k x²

As there is no rubbing the energy is conserved

   Em₀ = E_{mf}

   ½ (m1 + m2) v_{f}² = = ½ k x²

   x = v_{f} √ (k / (m1 + m2))

   x = 2.4 √ (11/3000)

   x = 0.396 m

7 0
3 years ago
Describe how can two or more velocities be combined
eduard
Two or more velocities add by vector addition
4 0
3 years ago
Boat A and Boat B have the same mass. Boat A's velocity is three times greater than that of Boat B. Compared to
Zarrin [17]

Answer:

nine times as much.

Explanation:

K.E of A = 9 times K.E of B

7 0
3 years ago
Read 2 more answers
Compare the benefits of wildfires to grasslands, northern forests, and deciduous forests.
Dimas [21]
Wildfires benefit grasslands, northern forests, and deciduous forests. Grasslands are benefited by improved soil quality and control of tree cover. Invertebrate species diversity is maintained through wildfire as well. Northern forests, like grasslands, experience increased production and nutritional quality of food as a result of wildfires. Deciduous forests experience an increase in the nutritional quality of food as well, but the effects are more temporary. The amount of shrubs in deciduous forests is reduced as a result of wildfires, allowing more herbaceous plants such as mosses and lichens to grow.
6 0
3 years ago
Read 2 more answers
A ball is thrown horizontally from the top of a 60 m building and lands 100 m from the base of the building. How long is the bal
zhannawk [14.2K]

Answer:

The ball is in the air for 3.5 seconds

The initial horizontal component of velocity is 28.6 m/s

The vertical component of the final velocity is 34.3 m/s downward

The final velocity is 44.7 m/s in the direction 50.2° below the horizontal

Explanation:

A ball is thrown horizontally

That means the vertical component of the initial velocity u_{y}=0

The initial velocity is the horizontal component u_{x}

The ball is thrown from the top of a 60 m

That means the vertical displacement component y = 60 m

→ y = u_{y} t + \frac{1}{2} gt²

where g is the acceleration of gravity and t is the time

y = -60 m , g = -9.8 m/s² , u_{y}=0

Substitute these values in the rule

→ -60 = 0 + \frac{1}{2} (-9.8)t²

→ -60 = -4.9t²

Divide both sides by -4.9

→ 12.2449 = t²

Take √ for both sides

∴ t = 3.5 seconds

* <em>The ball is in the air for 3.5 seconds </em>

The initial velocity is the horizontal component u_{x}

The ball lands 100 meter from the base of the building

That means the horizontal displacement x = 100 m

→ x = u_{x} t

→ t = 3.5 s , x = 100 m

Substitute these values in the rule

→ 100 = u_{x} (3.5)

Divide both sides by 3.5

→ u_{x} = 28.57 m/s

<em>The initial horizontal component of velocity is 28.6 m/s</em>

The vertical component of the final velocity is v_{y}

→ v_{y} = u_{y} + gt

→ u_{y} = 0 , g = -9.8 m/s² , t = 3.5 s

Substitute these values in the rule

→ v_{y} = 0 + (-9.8)(3.5)

→ v_{y} = -34.3 m/s

<em>The vertical component of the final velocity is 34.3 m/s downward</em>

The final velocity v is the resultant vector of  v_{x} and v_{y}

→ Its magnetude is v=\sqrt{(v_{x})^{2}+(v_{y})^{2}}

→ Its direction tan^{-1}\frac{v_{y}}{v_{x}}

→ v_{y} = 28.6 , v_{y} = -34.3

Substitute this values in the rules above

→ v=\sqrt{(28.6)^{2}+(-34.3)^{2}}=44.66

→ Its direction tan^{-1}\frac{-34.3}{28.6}=-50.18

The negative sign means the direction is below the horizontal

<em>The final velocity is 44.7 m/s in the direction 50.2° below the horizontal</em>

7 0
3 years ago
Other questions:
  • Why is it beneficial to perform focal point of a convex lens exercises in a dimly-lit room?
    8·1 answer
  • Consider a rifle, which has a mass of 2.44 kg and a bullet which has a mass of 150 grams and is loaded in the firing chamber.Whe
    14·1 answer
  • A plane travels 1743 KM in 2 hours 30 minutes. How fast was the plane traveling?
    7·1 answer
  • What are three things that travel in waves
    14·2 answers
  • A uniform cylinder of radius 25 cm and mass 27 kg is mounted so as to rotate freely about a horizontal axis that is parallel to
    13·1 answer
  • The element oxygen, represented by the symbol O, is classified as
    8·2 answers
  • A train Traveled from hong kong to beijing. It traveled at an average speed of 160 km/h in the first four hours. After that, it
    11·1 answer
  • the density of brick is 1,600 kg/m3. what is the mass of a brick with a volume of 0.0006 m3? WILL MARK BRAINLIEST
    15·1 answer
  • a deer with a mass of 176 kg is running head-on towards you with a velocity of 19 m/s. you are going north. find the magnitude a
    10·1 answer
  • The fine horizontal scratches etched onto a bullet after it has been fired are called?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!