Answer:
No, if a car is going faster. The RPM is obviously higher. If that is higher, you can burn through gas and energy much faster. A car going at 15mph would be cruising and wouldn't have to worry too much about burning our your vehicle.
Explanation:
Answer:

ΔK = 2.45 J
Explanation:
a) Using the law of the conservation of the linear momentum:

Where:


Now:

Where
is the mass of the car,
is the initial velocity of the car,
is the mass of train,
is the final velocity of the car and
is the final velocity of the train.
Replacing data:

Solving for
:

Changed to cm/s, we get:

b) The kinetic energy K is calculated as:
K = 
where M is the mass and V is the velocity.
So, the initial K is:



And the final K is:




Finally, the change in the total kinetic energy is:
ΔK = Kf - Ki = 22.06 - 19.61 = 2.45 J
The best answer is A) <span>keep moving at a constant velocity until some forces act on them
As the man you're probably tired of hearing about said:
"Every object persists in its state of rest or in uniform motion in a straight line unless a new force acts upon it"
This is Isaac Newton's 1st law of motion, or the law of inertia.
Put more simply, objects in motion tend to stay in motion, and tend the maintain the same velocity (direction and speed) and objects at rest tend to stay at rest. </span>
Answer:
Explanation:
4√((40(4046)) = 1,609.17370... = 1609 m
Answer:
The coefficient of rolling friction will be "0.011".
Explanation:
The given values are:
Initial speed,

then,


Distance,
s = 18.2 m
The acceleration of a bicycle will be:
⇒ 
On substituting the given values, we get
⇒ 
⇒ 
⇒ 
⇒ 
As we know,
⇒ 
and,
⇒ 
⇒ 
On substituting the values, we get
⇒ 
⇒ 