Answer:

Explanation:
Hello.
In this case, we can solve this problem by applying the Boyle's law which allows us to understand the pressure-volume behavior as a directly proportional relationship:

In such away, knowing the both the initial pressure and volume and the final volume, we can compute the final pressure as shown below:

Consider that the given initial pressure is also equal to Pa:

Which stands for a pressure increase when volume decreases.
Regards.
Answer:
0.6749 M is the concentration of B after 50 minutes.
Explanation:
A → B
Half life of the reaction = 
Rate constant of the reaction = k
For first order reaction, half life and half life are related by:


Initial concentration of A = ![[A]_o=0.900 M](https://tex.z-dn.net/?f=%5BA%5D_o%3D0.900%20M)
Final concentration of A after 50 minutes = ![[A]=?](https://tex.z-dn.net/?f=%5BA%5D%3D%3F)
t = 50 minute
![[A]=[A]_o\times e^{-kt}](https://tex.z-dn.net/?f=%5BA%5D%3D%5BA%5D_o%5Ctimes%20e%5E%7B-kt%7D)
![[A]=0.900 M\times e^{-0.02772 min^{-1}\times 50 minutes}](https://tex.z-dn.net/?f=%5BA%5D%3D0.900%20M%5Ctimes%20e%5E%7B-0.02772%20min%5E%7B-1%7D%5Ctimes%2050%20minutes%7D)
[A] = 0.2251 M
The concentration of A after 50 minutes = 0.2251 M
The concentration of B after 50 minutes = 0.900 M - 0.2251 M = 0.6749 M
0.6749 M is the concentration of B after 50 minutes.
Closer=Burn
Farther=Freeze
We are the perfect distance away from the sun for it to sustain life.
It is called exothermic reaction because it releases heat and light and it is called combustion reaction because it is reacting and is being oxidised by O2 to MgO.
It can also be called as oxidation reaction since Mg is oxidised to MgO.