$14.00
fee for a Law and rule book
Im not really sure what your asking.... <span>Standard sea-level pressure, by definition, equals 760 mm (29.92 inches) of mercury, </span>14.70 pounds per square inch<span>, 1,013.25 × 10 </span>3<span> dynes per square centimetre, 1,013.25 millibars, one standard atmosphere, or 101.325 kilopascals.
</span><span>""atmospheric pressure | Britannica.com""</span>
Answer:
This question is incomplete
Explanation:
The question is incomplete because of the absence of the table but since the question says there are data from an investigation about a plant growth and five other plants (making six) of the same type, the best way to display this type of data for analyst is to use the grouped bar chart. <u>The grouped bar chart will display the data obtained (from an investigation on plant growth) from different students on each of the six plants (of the the same type)</u>.
Colours are usually used to identify the bars (of a group) or could be used to separate the group from other groups but in this case, colours are better used to identify the bars of a group.
Answer:
c. rate=−1/2Δ[HBr]/Δt=Δ[H2]/Δt=Δ[Br2]/Δt
Explanation:
Hello,
In this case, the undergoing chemical reaction is:

Thus, the rate is given as:
![rate=-\frac{1}{2} \frac{\Delta [HBr]}{\Delta t}=\frac{\Delta [Br_2]}{\Delta t} =\frac{\Delta [H_2]}{\Delta t}](https://tex.z-dn.net/?f=rate%3D-%5Cfrac%7B1%7D%7B2%7D%20%5Cfrac%7B%5CDelta%20%5BHBr%5D%7D%7B%5CDelta%20t%7D%3D%5Cfrac%7B%5CDelta%20%5BBr_2%5D%7D%7B%5CDelta%20t%7D%20%3D%5Cfrac%7B%5CDelta%20%5BH_2%5D%7D%7B%5CDelta%20t%7D)
It is necessary to remember that each concentration to time interval is divided into the stoichiometric coefficient, that is why HBr has a 1/2. Moreover, the concentration HBr is negative since it is a reactant and it has a negative rate due to its consumption.
Therefore, the answer is:
c. rate=−1/2Δ[HBr]/Δt=Δ[H2]/Δt=Δ[Br2]/Δt
Best regards.
Answer:
The value is 
Explanation:
From the question we are told that

The initial volume of the fluorocarbon gas is 
The final volume of the fluorocarbon gas is
The initial temperature of the fluorocarbon gas is 
The final temperature of the fluorocarbon gas is 
The initial pressure is 
The final pressure is 
Generally the equation for adiabatically reversible expansion is mathematically represented as
![T_2 = T_1 * [ \frac{V_1}{V_2} ]^{\frac{R}{C_v} }](https://tex.z-dn.net/?f=T_2%20%3D%20%20T_1%20%20%2A%20%5B%20%5Cfrac%7BV_1%7D%7BV_2%7D%20%5D%5E%7B%5Cfrac%7BR%7D%7BC_v%7D%20%7D)
Here R is the ideal gas constant with the value

So
=> 
Generally adiabatic reversible expansion can also be mathematically expressed as

=>
=> 
=>
So

=> 