I'm not sure if a figure or some choices go along with this, but the closer to the sea floor the diver is, the lower the potential energy
(a) The work done by the force applied by the tractor is 79,968.47 J.
(b) The work done by the frictional force on the tractor is 55,977.93 J.
(c) The total work done by all the forces is 23,990.54 J.
<h3>
Work done by the applied force</h3>
The work done by the force applied by the tractor is calculated as follows;
W = Fd cosθ
W = (5000 x 20) x cos(36.9)
W = 79,968.47 J
<h3>Work done by frictional force</h3>
W = Ffd cosθ
W = (3500 x 20) x cos(36.9)
W = 55,977.93 J
<h3>Net work done by all the forces on the tractor</h3>
W(net) = work done by applied force - work done by friction force
W(net) = 79,968.47 J - 55,977.93 J
W(net) = 23,990.54 J
Learn more about work done here: brainly.com/question/25573309
#SPJ1
relation between potential difference and electric field is given as

so here we know that
d = 3 cm



So now when plates are separated to 4 cm distance carefully
the potential difference between them will change but the electric field between them will remain constant
So at distance of 4 cm also the electric field will be E = 1000 N/C
Answer:
Density is defined as:
Density = Mass/Volume
Now, density is an intensive property, this means that if you have 10 grams of a given material or 1000 grams of the same material, in both cases you will find the same density.
Then a roll of 50 pennies has the same density that a single penny.
The measures of a single penny are:
Mass = 2.5 g
Thickness = 1.52 mm
Radius = 9.525 mm
The coin is a cylinder, and the volume of a cylinder is:
V = pi*r^2*h
where:
pi = 3.14
r = radius = 9.525mm
h = thikness = 1.52mm
The volume is:
V = 3.14*(9.525mm)^2*1.52mm = 433.015 mm^3
The density will be:
D = 2.5g/433.015mm^3 = 0.00577 g/mm^3
Answer:
The principle of conservation of energy states that in a closed system, the energy can neither be created nor destroyed between interacting particles and remains constant or transformed from one form to another
In the jet engine, the release of jet changes the number of interacting particles in the engine, and given that energy cannot be created in the instantaneously closed system of the engine, energy is carried away and therefore lost by particles in the jet exhaust
The conservation of energy principle is therefore obeyed in the condition in which the jet engine losses energy by the release of jet
Explanation: