Acceleration = Change in Velocity / time
a = (v - u) / t
Where v = final velocity in m/s
u = initial velocity in m/s
t = time in seconds.
a = acceleration in m/s²
A proper record of the changes in velocity with the corresponding time would help find the acceleration.
Explanation:
Given that,
The mass of rock, m = 2.35-kg
It was released from rest at a height of 21.4 m.
(a) The kinetic energy is given by : 
As the rock was at rest initially, it means, its kinetic energy is equal to 0.
(b) The gravitational potential energy is given by : 
It can be calculated as :

(c) The mechanical energy is equal to the sum of kinetic and potential energy such that,
M = 0 J + 492.84 J
M = 492.84 J
Hence, this is the required solution.
Answer:
Mantle and core
Explanation:
The Mantle and Core are the two components within Earth experiencing convection. In several ways the mantle is significant. The one outcome of convective current is the creation of the fresh oceanic lithosphere around OCEANIC RIDGES, formed by mantle upwelling. Core is indeed the planet's innermost layer.
Answer:
Velocity,v = 0.323 m/s
Explanation:
The acceleration of a particle is given by :

b = 0.8 m when x = 0
Since,

![\dfrac{v^2}{2}=-[0.1x-0.8cos\dfrac{x}{0.8}]+c](https://tex.z-dn.net/?f=%5Cdfrac%7Bv%5E2%7D%7B2%7D%3D-%5B0.1x-0.8cos%5Cdfrac%7Bx%7D%7B0.8%7D%5D%2Bc)
At x = 0, v = 1 m/s


![\dfrac{v^2}{2}=-[0.1x-0.8cos\dfrac{x}{0.8}]-0.3](https://tex.z-dn.net/?f=%5Cdfrac%7Bv%5E2%7D%7B2%7D%3D-%5B0.1x-0.8cos%5Cdfrac%7Bx%7D%7B0.8%7D%5D-0.3)
At x = -1 m


v = 0.323 m/s
So, the velocity of the particle is 0.323 m/s. Hence, this is the required solution.