Answer:
Force must be applied to m₁ to move the group of rocks from the road at 0.250 m/s² = 436 N
Explanation:
Total force required = Mass x Acceleration,
F = ma
Here we need to consider the system as combine, total mass need to be considered.
Total mass, a = m₁+m₂+m₃ = 584 + 838 + 322 = 1744 kg
We need to accelerate the group of rocks from the road at 0.250 m/s²
That is acceleration, a = 0.250 m/s²
Force required, F = ma = 1744 x 0.25 = 436 N
Force must be applied to m₁ to move the group of rocks from the road at 0.250 m/s² = 436 N
Answer:
d. all four jovian planets.
Explanation:
The Jovian planets are as follows -
URANUS , SATURN , JUPITER, and NEPTUNE .
All these four jovian planets are having the rings , and the rings are made up of infinite number of small pieces of the ice and the rock .
Hence ,
These planets are comparatively small and dense cores surrounded by massive layers of gas .
The distance of separation between the two masses is 0.927 m.
<h3>Gravitational force:</h3>
This is the force that exists between two masses in the universe.
To calculate the distance of separation of the masses, we use the formula below.
- F = GMm/r².............. Equation 1
Where:
- F = Gravitational force
- m = First mass
- M = Second mass
- G = Universal constant
- r = distance of seperation.
Make r the subject of the equation.
- r = √(GMm/F)................... Equation 2
From the question,
Given:
- F = 3.3×10⁻⁷ N
- m = 61 kg
- M = 75 kg
- G = 6.69×10⁻¹¹ Nm²/kg²
Substitute these values into equation 2
- r = √(61×75×6.69×10⁻¹¹)/(3.3×10⁻⁷)
- r = 0.927 m
Hence, The distance of separation between the two masses is 0.927 m
Learn more about Gravitational force here: brainly.com/question/11359658
A la romana me voy a beber Buchanan que tiene sangre gitana
Answer:
daughters cells
Explanation:
when people refer to “cell division,” they mean mitosis, the process of making new body cells. Meiosis is the type of cell division that creates egg and sperm cells. Mitosis is a type of cell division in which one cell (the mother) divides to produce two new cells (the daughters) that are genetically identical to itself.