Answer:
The absorbance of the myoglobin solution across a 1 cm path is 0.84.
Explanation:
Beer-Lambert's law :
Formula used :



where,
A = absorbance of solution
c = concentration of solution
= Molar absorption coefficient
l = path length
= incident light
= transmitted light
Given :
l = 1 cm, c = 1 mg/mL ,
Molar mass of myoglobin = 17.8 kDa = 17.8 kg/mol=17800 g/mol
(1 Da = 1 g/mol)
c = 1 mg /mL = 

1 mg = 0.001 g, 1 mL = 0.001 L


The absorbance of the myoglobin solution across a 1 cm path is 0.84.
To balance a chemical reaction, it is important to remember that the number of atoms of each element in the reactants and the product side should be equal. This is to follows the law of conservation of mass where mass cannot be created or destroyed. So, the total mass that is used to react should have the same value of the total mass of the substances produced from the reactants. The balanced chemical reaction would be written as follows:
<span> 2h2 + o2 = 2h2o
Reactant = Product
H = 4 = 4
O = 2 = 2
Therefore, the correct coefficient for the hydrogen gas would be 2.</span>
The answer to the problem is 4.5 kilometers. you can solve this problem by cross multiplying
Explanation:
(a) The mass of an object remains the same always. It is independent of its location. In this case, an iron nail is ground into powder. It means that its mass will remain unchanged. Hence, (a) is the correct option.
(b) Whenever there is a change of color of an object, a chemical reaction occurs. It shows that a reaction happens there. In this problem, a paper turns yellow-brown upon exposure to sunlight. A chemical reaction takes place there. Hence, (b) is the correct option.
The distance of the earth to the sun in Mm = 1.5 x 10⁵
<h3>Further explanation</h3>
Given
The distance of the earth to the sun : 1.50 x 10⁸ km
Required
The distance in Mm
Solution
In converting units we must pay attention to the conversion factor.
the conversion factor :
1 kilometer(km) = 10⁻³ megameter(Mm)
So the distance conversion :
1.5 x 10⁸ x 10⁻³ = 1.5 x 10⁵ Mm