Answer:
The arrangement of the periodic table leads us to visualize certain trends among the atoms.
Elements are arranged from left to right and top to bottom in order of increasing atomic number.
The vertical columns (groups) of the periodic table are arranged so that all its elements have the same number of valence electrons (outer ring). All elements within a certain group share similar properties.
The rows are called periods. All elements in a row have the same number of electron shells.
False because when a substance changes from one state of matter to another it is a physical change no matter how many states of matter it skips
Answer:
Total pressure 5.875 atm
Explanation:
The equation for above decomposition is

rate constant 
Half life 
Initial pressure 
Pressure after 3572 min = P
According to first order kinematics


solving for P we get
P = 2.35 atm

initial 4.70 0 0
change -2x +2x +x
final 4.70 -2x 2x x
pressure of
after first half life = 2.35 = 4.70 - 2x
x = 1.175
pressure of
after first half life = 2x = 2(1.175) = 2.35 ATM
Total pressure = 2.35 + 2.35 + 1.175
= 5.875 atm
Answer:
3.09kg
Explanation:
First, let us write a balanced equation for the reaction. This is illustrated below:
2C8H18 + 25O2 —> 16CO2 + 18H2O
Molar Mass of C8H18 = (12x8) + (18x1) = 96 + 18 = 114g/mol
Mass of C8H18 from the balanced equation = 2 x 114 = 228g
Converting 228g of C8H18 to kg, we obtained:
228/1000 = 0.228kg
Molar Mass of CO2 = 12 + (2x16) = 12 + 32 = 44g/mol
Mass of CO2 from the balanced equation = 16 x 44 = 704g
Converting 704g of CO2 to kg, we obtained:
704/1000 = 0.704kg
From the equation,
0.228kg of C8H18 produced 0.704kg of CO2.
Therefore, 1kg of C8H18 will produce = 0.704/0.228 = 3.09kg of CO2