1) Balanced chemical equation:
2SO2 (g) + O2 (g) -> 2SO3 (l)
2) Molar ratios
2 mol SO2 : 1 mol O2 : 2 mol SO3
3) Convert 6.00 g O2 to moles
number of moles = mass in grams / molar mass
number of moles = 6.00 g / 32 g/mol = 0.1875 mol O2.
4) Use proportions with the molar ratios
=> 2 moles SO2 / 1 mol O2 = x / 0.1875 mol O2
=> x = 0.1875 mol O2 * 2 mol SO2 / 1 mol O2 = 0.375 mol SO2.
5) Convert 0.375 mol SO2 to grams
mass in grams = number of moles * molar mass
molar mass SO2 = 32 g/mol + 2*16 g/mol = 64 g/mol
=> mass SO2 = 0.375 mol * 64 g / mol = 24.0 g
Answer: 24.0 g of SO2 are needed to react completely with 6.00 g O2.
Data:




<span>
Formula: Dilution Calculations
</span>

<span>
Solving:
</span>





<span>
</span>
I believe the correct answer is the second option. The type of decay that characterizes the change of nuclides to their respective daughter products would be exponential decay. This type of decay is characterized by the decrease of quantity of a material according to the equation y=ab^x.
A cylindrical weight with a mass of 3 kg is dropped onto the piston from a height of 10 m. The entropy of the gas is 1.18 J/K and the change in the entropy of the environment is -1.18 J/K.
A cylindrical weight with a mass (m) of 3 kg is dropped, that is, its initial velocity (u) is 0 m/s and travels 10 m (s). Assuming the acceleration (a) is that of gravity (9.8 m/s²). We can calculate the velocity (v) of the weight in the instant prior to the collision with the piston using the following kinematic equation.

The object with a mass of 3 kg collides with the piston at 14 m/s, The kinetic energy (K) of the object at that moment is:

The kinetic energy of the weight is completely converted into heat transferred into the gas cylinder. Thus, Q = 294 J.
Given all the process is at 250 K (T), we can calculate the change of entropy of the gas using the following expression.

The change in the entropy of the environment, has the same value but opposite sign than the change in the entropy of the gas. Thus, 
A cylindrical weight with a mass of 3 kg is dropped onto the piston from a height of 10 m. The entropy of the gas is 1.18 J/K and the change in the entropy of the environment is -1.18 J/K.
Learn more: brainly.com/question/22655760
Answer:
The weight-average molar mass of polystyrene is 134,160 g/mol.
Explanation:
Molar mass of the monomer styrene ,
, M=104 g/mol
Given , number average molar mass of the polymer , M'= 89,440 g/mol
Degree of polymerization = n

The weight-average molar mass = 
Molar mass dispersity is ratio of weight-average molar mass to the number average molar mass of the polymer.



The weight-average molar mass of polystyrene is 134,160 g/mol.