Ok we can use boyle’s law (stating that P is proportional to V) to make the equation (P1V1) =(P2V2).
once we’ve done this, we can plug in the numbers:
(800•500) = (200•V2)
and then we get that
V2= 2000 ml
hope this helps!! :)
Answer:
The gecko's feet have tiny suction cups on them that stick to the surface.
Answer:
12 moles of F₂
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
N₂ + 3F₂ —> 2NF₃
From the balanced equation above,
3 moles of F₂ reacted to produce 2 moles of NF₃.
Finally, we shall determine the number of mole of F₂ needed to produce 8 moles of NF₃. This can be obtained as illustrated below:
From the balanced equation above,
3 moles of F₂ reacted to produce 2 moles of NF₃.
Therefore, Xmol of F₂ will react to produce 8 moles of NF₃ i.e
Xmol of F₂ = (3 × 8)/2
Xmol of F₂ = 12 moles
Thus, 12 moles of F₂ is needed for the reaction.
Answer is: intramolecular attractions are stronger.
Intramolecular attractions are the forces between atoms in molecule.
There are several types of intramolecular forces: covalent bonds, ionic bonds.
Intermolecular forces are the forces between molecules. The stronger are intermolecular forces, the higher is boiling point of compound, because more energy is needed to break interaction between molecules.
There are several types of intermolecular forces: hydrogen bonding, ion-induced dipole forces, ion-dipole forces andvan der Waals forces.
Hydrogen bonds are approximately 5% of the bond strength of covalent C-C or C-H bonds.
Hydrogen bonds strength in water is approximately 20 kJ/mol, strenght of carbon-carbon bond is approximately 350 kJ/mol and strengh of carbon-hydrogen bond is approximately 340 kJ/mol.
20 kJ/350 kJ = 0.057 = 5.7 %.