Justin is most likely walking in a grassland biome .
Isoelectronic species are ions or elements that have equal number of electrons. From the root word, electron of the word isoelectronic. On the other hand, isotructural species are compounds with the same structures.Hope this answers the question.
Answer:
λ=2167.6 nm
The wavelength of light emitted is 2167.6 nm.
Explanation:
We recall that Eₙ=
since there was transition from n7 to n=4 we will first calculate the change in the energy i.e ΔE
ΔE=E₄-E₇
ΔE=
ΔE=-9.1760*10^-20 J
Now:
|ΔE|=Energy of photon=h*v=h*c/λ
λ=h*c/|ΔE|
λ=
λ=2.1676*10^-6 m
λ=2167.6*10^-9 m
λ=2167.6 nm
The wavelength of light emitted is 2167.6 nm.
Answer:
Hydrofluoric acid.
Explanation:
To know which of the acid is the strongest, let us determine the pka of each acid. This is illustrated below:
1. Acetic acid
Ka = 1.8x10^-5
pKa =..?
pKa = –logKa
pKa = –Log 1.8x10^-5
pKa = 4.74
2. Benzoic acid
Ka = 6.5x10^-5
pKa =..?
pKa = –logKa
pKa = –Log 6.5x10^-5
pKa = 4.18
3. Hydrofluoric acid.
Ka = 6.8x10^-4
pKa =..?
pKa = –logKa
pKa = –Log 6.8x10^-4
pKa = 3.17
4. Hypochlorous acid
Ka = 3.0x10^-8
pKa =..?
pKa = –logKa
pKa = –Log 3.0x10^-8
pKa = 7.52
Note: the smaller the pKa value, the stronger the acid.
The pka of the various acids as calculated above is given below:
Acid >>>>>>>>>>>>>>>>>> pKa
1. Acetic acid >>>>>>>>>> 4.74
2. Benzoic acid >>>>>>>> 4.18
3. Hydrofluoric acid >>>> 3.17
4. Hypochlorous acid >> 7.52
From the above illustration, we can see that hydrofluoric acid has the lowest pKa value. Therefore, hydrofluoric acid is the strongest among them.