<span>A. Exact ecological footprints are often difficult to calculate, but estimates can be useful in comparing populations.
</span>Which of the following could be said about ecological footprints? <u /> <u>Exact ecological footprints are often difficult to calculate, but estimates can be useful in comparing populations.</u><u />
NOT:
b. Ecological footprints can't be used to determine carrying capacity.
C. Ecological footprints don't take into account resources needed to absorb and manage wastes.
<span>D. The average ecological footprints for various countries are nearly identical.</span>
A and B are experiencing winter. The picture which isn't available here in this question is attached below.
Option C.
<h3><u>Explanation:</u></h3>
The earth is tilt by an angle of 23.2° to the vertical plane. This makes the seasonal variation of earth, because in some time of the year, the northern hemisphere faces the sun directly, experiencing summer and then southern hemisphere is away from summer experiencing winter and vice versa. The summer occurs when the place directly faces the sun. And the winter happens when the place obliquely faces the sun or doesn't face the sun at all.
Here in this diagram, we can see that the points A and B are the north pole and the part in northern hemisphere respectively which aren't facing the sun directly, whereas C and D are facing the sun. Thus the southern hemisphere is experiencing summer and the northern hemisphere the winter.
Between atoms (one metall and one non metall) form an ionic bond(NaCl)
The Boiling Point of 2-methylpropane is approximately -11.7 °C, while, Boiling Point of <span>2-iodo-2-methylpropane is approximately 100 </span>°C.
As both compounds are Non-polar in nature, So there will be no dipole-dipole interactions between the molecules of said compounds.
The Interactions found in these compounds are London Dispersion Forces.
And among several factors at which London Dispersion Forces depends, one is the size of molecule.
Size of Molecule:
There is direct relation between size of molecule and London Dispersion forces. So, 2-iodo-2-methylpropane containing large atom (i.e. Iodine) experience greater interactions. So, due to greater interactions 2-iodo-2-methylpropane need more energy to separate from its partner molecules, Hence, high temperature is required to boil them.
Answer:
K2SO4(aq) + Ba(NO3)2(aq)
Explanation:
K2SO4(aq) + Ba(NO3)2(aq)= 2KNO3(aq) + BaSO4(s)
The reaction produces BaSO4
Which precipitates as the insoluble product and Soluble KNO3 solution