I belive what your looking for is oxygen
Answer:
The y-component of the electric force on this charge is 
Explanation:
<u>Given:</u>
- Electric field in the region,

- Charge placed into the region,

where,
are the unit vectors along the positive x and y axes respectively.
The electric field at a point is defined as the electrostatic force experienced per unit positive test charge, placed at that point, such that,

Thus, the y-component of the electric force on this charge is 
Answer:
sorry I dont now the answer bro i am so sorry xd ;'(
Answer:
B. Its density is lower than that of water
Explanation:
density = mass / volume
density of the liquid = 85 / 100 = 0.85 g/cm^3
now,
density of water is 1 g/cm^3 which is greater than the density of the given liquid ( 0.85 g/cm^3 )