By definition we have that
force=dP/dt,
where
p is momentum
so
<span>momentum is force*time
p= 15*3 = 45 Ns , west.
</span><span>the change in momentum of the object is 45 N.s</span>
Answer:
a) Initial Value Problem
dv/dt = 4 - 0.1v
v(0) = 0
b) solution to the IVP
v(t) = 40(1 - e^(-t/10))
c) Limiting velocity
Vo = 40 ft/s
Position of the car after 12 hours
X = 14,390 ft
Explanations:
The complete explanations of each of the sections contained in the question are in the files attached to this solution.
Answer:
The tube should be held vertically, perpendicular to the ground.
Explanation:
As the power lines of ground are equal, so its electrical field is perpendicular to the ground and the equipotential surface is cylindrical. Therefore, if we put the position fluorescent tube parallel to the ground so the both ends of the tube lie on the same equipotential surface and the difference is zero when its potential.
And the ends of the tube must be on separate equipotential surfaces to optimize potential. The surface near the power line has a greater potential value and the surface farther from the line has a lower potential value, so the tube must be placed perpendicular to the floor to maximize the potential difference.
A should be the answer since it makes the water down there cold and the air also. (asked my grandma haha