Answer:
Explanation:
We shall find first the velocity of ball at the time when string breaks. Let it be v . During its fall on the ground , 1.02 m below, we use the formula
h = 1/2 gt² where t is time of fall .
1.02 = 1/2 x 9.8 x t²
t²= .2081
t = .456
During this time it travels horizontally at distance of 2.5 m with uniform velocity of v
v x .456 = 2.5
v = 5.48 m /s
centripetal acceleration
= v² / r where r is radius of the circular path
= 5.48² / .478
= 62.82 m /s²
Muscular strength is a measure of how much force you can exert in one repetition. Muscular endurance refers to the ability to perform a specific muscular action for a prolonged period of time.
its important so we can learn things about the species
Answer:
Acceleration of that planet is 30
.
Given:
initial speed of hammer = 0 
time = 1 s
distance = 15 m
To find:
Acceleration due to gravity = ?
Formula used:
Distance covered by hammer is given by,
s = ut + 
s = distance
u = initial speed of hammer
t = time taken by hammer to reach ground
a = acceleration
Solution:
Distance covered by hammer is given by,
s = ut + 
s = distance
u = initial speed of hammer
t = time taken by hammer to reach ground
a = acceleration
u = 0
t = 1 s
s = 15 m
a = g
Thus substituting these value in above equation.
15 = 0 + 
g = 15 × 2
g = 30 
Thus, acceleration of that planet is 30
.
The formula we can use in this case is:
v = v0 + a t
where v is final velocity, v0 is initial velocity, a is
acceleration and t is time
So finding for v0:
v0 = v – a t
v0 = 43.7 – (2.5) 2.7
v0 = 36.95 m/s