Answer:
b) The star is moving away from us.
Explanation:
If an object moves toward us, the light waves it emits are compressed - the wavelength of the light will be shorter, making the light bluer. On the other hand, if an object moves away from us, the light waves are stretched, making it redder. If from laboratory measurements we know that a specific hydrogen spectral line appears at the wavelength of 121.6 nanometers (nm) and the spectrum of a particular star shows the same hydrogen line appearing at the wavelength of 121.8 nm, we can conclude that the star is moving away from npos, since the wavelength related to that star is more expanded.
The frictional force of an object is the product of the normal force and coefficient of kinetic friction. Here the frictional force acting on the object is 16.4 N.
<h3>What is frictional force?</h3>
Frictional force is a kind of force acting on a body to resist it from motion. Thus, the direction of the force will be in negative with the magnitude. Frictional force is the product of coefficient of friction and the normal force.
The normal force acting on the object of mass 4.2 Kg is N = mg
N = 4.2 Kg × 9.8 m/s² = 41.16 N
Frictional force = ц N
= 0.40 × 41.16 N
= 16.4 N.
Therefore, the frictional force acting between the surface of the object and the floor is 16.4 N
To find more on frictional force, refer here:
brainly.com/question/1714663
#SPJ1
Your question is incomplete. But your complete question probably was:
The coefficient of kinetic friction between an object and the surface upon which it is sliding is 0.40 the weight of the object is 4.2 kg. What is the frictional force of the object?
The speed of a wave in a uniform medium doesn't depend on its wavelength.
Answer:
Ruko zara kuch Time dedo na please