Because you need to know what you are looking for before actually trying something so you can prevent any accidents by doing stuff at random
The answer for the following problem is mentioned below.
- <u><em>Therefore number of molecules(N) present in the calcium phosphate sample are 19.3 × 10^23 molecules.</em></u>
Explanation:
Given:
mass of calcium phosphate (
) = 125.3 grams
We know;
molar mass of calcium phosphate (
) = (40×3) + 3 (31 +(4×16))
molar mass of calcium phosphate (
) = 120 + 3(95)
molar mass of calcium phosphate (
) = 120 +285 = 405 grams
<em>We also know;</em>
No of molecules at STP conditions(
) = 6.023 × 10^23 molecules
To solve:
no of molecules present in the sample(N)
We know;
N÷
=
N =(405×6.023 × 10^23) ÷ 125.3
N = 19.3 × 10^23 molecules
<u><em>Therefore number of molecules(N) present in the calcium phosphate sample are 19.3 × 10^23 molecules</em></u>
Since Na has a 1+ charge and O has a -2 charge, by reversing the charges and placing them as subscripts for the other atoms the formula is Na2O1 or simply Na2O.
Answer:
The correct answer is because they have same number of protons but different number of neutrons.
Explanation:
Isotopes are atoms of the same element but differ only in the number of neutrons in the nucleus, i.e. they have same atomic number but different mass number.
Mass number is affected as they have different number of neutrons, thus effecting their physical properties.
The number of electrons and protons are same, i.e. their atomic number is same and thus their chemical properties are same as chemical properties are determined by the atom’s electronic configuration and that relates to number of protons.
Answer:
The final temperature is 39.58 degree Celsius
Explanation:
As we know
Q = m * c * change in temperature
Specific heat of water (c) = 4.2 joules per gram per Celsius degree
Substituting the given values we get -
5750 = 335 * 4.2 * (X - 35.5)
X = 39.58 degree Celsius