O2=32 g/ mol
1.15/32=0.035
N2=28 g/mol
1.55/28=0.055
in STP every 22.4 litters is 1 mol
Answer:
False
Explanation:
False. The molecules of liquid are hold in the liquid state due to intermolecular forces or Van de Waals forces , without affecting the molecule itself and its atomic bonds (covalent bonds). When the temperature increases the kinetic energy of the molecules is higher , therefore they have more possibilities to escape from the attractive intermolecular forces and go to the gas state.
Note however that this is caused because the intermolecular forces are really weak compared to covalent bonds, therefore is easier to break the first one first and go to the gas state before any covalent bond breaks ( if it happens).
A temperature increase can increase vaporisation rate if any reaction is triggered that decomposes the liquid into more volatile compounds , but nevertheless, this effect is generally insignificant compared with the effect that temperature has in vaporisation due to Van der Waals forces.
An inter-molecular power is basically an alluring power between neighboring particles. There are three regular sorts of inter-molecular power: lasting dipole-dipole powers, hydrogen bonds and van der Waals' powers.
Answer:
No
Explanation:
The solubility of a solid in water refers to the amount of that solid that dissolves in water.
It is not possible to calculate the solubility of the solid because the student threw away the first precipitate that formed. We already have the volume of water, but having lost some mass of precipitate, it has become impossible to accurately determine the solubility.
Hence the answer provided above.