Answer:
Explanation:
Given
mass of each railroad is M
first railroad is moving with velocity
and other two's with 
conserving Momentum

where v_f is the final velocity of combined system
(b)Initial Kinetic Energy


Final Kinetic Energy

Loss in Kinetic Energy


The transmission of a transparent piece of glass is very hard as the glass is fragile
Answer:
p = 0.16 kgm/s
Explanation:
the initial momentum combined of the two cars and the final momentum of the paired cares are the same, so we just need to find the initial momentum
p = m1v1 + m2v2
p = 0.04*4 + 0.04*0
p = 0.04*4
p = 0.16 kgm/s
(a) The proton’s potential energy change is 3.6 x 10⁻¹⁸ J.
(b) The potential difference between the negative plate and a point midway between the plates is 11.25 V.
(c) The speed of the proton just before it hits the negative plate is 6.57 x 10⁴ m/s.
<h3>
Potential energy of the proton</h3>
U = qΔV
where;
- q is charge of the proton
- ΔV is potential difference
U = q(Ed)
U = (1.6 x 10⁻¹⁹)(1500 x 1.5 x 10⁻²)
U = 3.6 x 10⁻¹⁸ J
<h3>Potential difference between the negative plate and a point midway</h3>
ΔV = E(0.5d)
ΔV = 0.5Ed
ΔV = 0.5 (1500)(1.5 x 10⁻²)
ΔV = 11.25 V
<h3>Speed of the proton </h3>
U = ¹/₂mv²
U = mv²
v² = 2U/m
where;
- m is mass of proton = 1.67 x 10⁻²⁷ kg
v² = (2 x 3.6 x 10⁻¹⁸) / ( 1.67 x 10⁻²⁷)
v² = 4.311 x 10⁹
v = √(4.311 x 10⁹)
v = 6.57 x 10⁴ m/s
Thus, the proton’s potential energy change is 3.6 x 10⁻¹⁸ J.
The potential difference between the negative plate and a point midway between the plates is 11.25 V.
The speed of the proton just before it hits the negative plate is 6.57 x 10⁴ m/s.
Learn more about potential difference here: brainly.com/question/24142403
#SPJ1