The answer to this question is A - 25 N
The strength of the electric field is 5 N/C
Explanation:
The magnitude of the electric field produced by a single-point charge is given by:

where
is the Coulomb's constant
Q is the magnitude of the charge
r is the distance from the charge
In this problem, we have:
is the charge producing the field
r = 100 m is the distance from the charge at which we want to calculate the field
Substituting into the equation, we find the s trength of the electric field:

Learn more about electric field:
brainly.com/question/8960054
brainly.com/question/4273177
#LearnwithBrainly
Answer:
8.91 J
Explanation:
mass, m = 8.20 kg
radius, r = 0.22 m
Moment of inertia of the shell, I = 2/3 mr^2
= 2/3 x 8.2 x 0.22 x 0.22 = 0.265 kgm^2
n = 6 revolutions
Angular displacement, θ = 6 x 2 x π = 37.68 rad
angular acceleration, α = 0.890 rad/s^2
initial angular velocity, ωo = 0 rad/s
Let the final angular velocity is ω.
Use third equation of motion
ω² = ωo² + 2αθ
ω² = 0 + 2 x 0.890 x 37.68
ω = 8.2 rad/s
Kinetic energy,

K = 0.5 x 0.265 x 8.2 x 8.2
K = 8.91 J
Answer:
The minimum coefficient of friction is 0.27.
Explanation:
To solve this problem, start with identifying the forces at play here. First, the bug staying on the rotating turntable will be subject to the centripetal force constantly acting toward the center of the turntable (in absence of which the bug would leave the turntable in a straight line). Second, there is the force of friction due to which the bug can stick to the table. The friction force acts as an intermediary to enable the centripetal acceleration to happen.
Centripetal force is written as

with v the linear velocity and r the radius of the turntable. We are not given v, but we can write it as

with ω denoting the angular velocity, which we are given. With that, the above becomes:

Now, the friction force must be at least as much (in magnitude) as Fc. The coefficient (static) of friction μ must be large enough. How large?

Let's plug in the numbers. The angular velocity should be in radians per second. We are given rev/min, which can be easily transformed by a factor 2pi/60:

and so 45 rev/min = 4.71 rad/s.

A static coefficient of friction of at least be 0.27 must be present for the bug to continue enjoying the ride on the turntable.
Can something have energy even if it's not moving?
All moving objects have kinetic energy. When an object is in motion, it changes its position by moving in a direction: up, down, forward, or backward. ... Potential energy is stored energy. Even when an object is sitting still, it has energy stored inside that can be turned into kinetic energy (motion).
Does a book at rest have energy?
A World Civilization book at rest on the top shelf of a locker possesses mechanical energy due to its vertical position above the ground (gravitational potential energy).
Does a book lying on a table have energy?
The book lying on a desk has potential energy; the book falling off a desk has kinetic energy.